An MPEC Estimator for the Sequential Search Model

Shinji Koiso, Suguru Otani
{"title":"An MPEC Estimator for the Sequential Search Model","authors":"Shinji Koiso, Suguru Otani","doi":"arxiv-2409.04378","DOIUrl":null,"url":null,"abstract":"This paper proposes a constrained maximum likelihood estimator for sequential\nsearch models, using the MPEC (Mathematical Programming with Equilibrium\nConstraints) approach. This method enhances numerical accuracy while avoiding\nad hoc components and errors related to equilibrium conditions. Monte Carlo\nsimulations show that the estimator performs better in small samples, with\nlower bias and root-mean-squared error, though less effectively in large\nsamples. Despite these mixed results, the MPEC approach remains valuable for\nidentifying candidate parameters comparable to the benchmark, without relying\non ad hoc look-up tables, as it generates the table through solved equilibrium\nconstraints.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a constrained maximum likelihood estimator for sequential search models, using the MPEC (Mathematical Programming with Equilibrium Constraints) approach. This method enhances numerical accuracy while avoiding ad hoc components and errors related to equilibrium conditions. Monte Carlo simulations show that the estimator performs better in small samples, with lower bias and root-mean-squared error, though less effectively in large samples. Despite these mixed results, the MPEC approach remains valuable for identifying candidate parameters comparable to the benchmark, without relying on ad hoc look-up tables, as it generates the table through solved equilibrium constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
顺序搜索模型的 MPEC 估算器
本文利用 MPEC(带均衡约束的数学编程)方法,提出了一种用于序列搜索模型的受约束最大似然估计方法。这种方法提高了数值精确度,同时避免了与平衡条件相关的特殊成分和误差。蒙特卡洛模拟显示,估计器在小样本中表现较好,偏差和均方根误差较小,但在大样本中效果较差。尽管结果好坏参半,但 MPEC 方法在确定与基准相当的候选参数方面仍然很有价值,而无需依赖特别的查找表,因为它是通过已解决的均衡约束条件生成表的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1