Performance of Empirical Risk Minimization For Principal Component Regression

Christian Brownlees, Guðmundur Stefán Guðmundsson, Yaping Wang
{"title":"Performance of Empirical Risk Minimization For Principal Component Regression","authors":"Christian Brownlees, Guðmundur Stefán Guðmundsson, Yaping Wang","doi":"arxiv-2409.03606","DOIUrl":null,"url":null,"abstract":"This paper establishes bounds on the predictive performance of empirical risk\nminimization for principal component regression. Our analysis is nonparametric,\nin the sense that the relation between the prediction target and the predictors\nis not specified. In particular, we do not rely on the assumption that the\nprediction target is generated by a factor model. In our analysis we consider\nthe cases in which the largest eigenvalues of the covariance matrix of the\npredictors grow linearly in the number of predictors (strong signal regime) or\nsublinearly (weak signal regime). The main result of this paper shows that\nempirical risk minimization for principal component regression is consistent\nfor prediction and, under appropriate conditions, it achieves optimal\nperformance (up to a logarithmic factor) in both the strong and weak signal\nregimes.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper establishes bounds on the predictive performance of empirical risk minimization for principal component regression. Our analysis is nonparametric, in the sense that the relation between the prediction target and the predictors is not specified. In particular, we do not rely on the assumption that the prediction target is generated by a factor model. In our analysis we consider the cases in which the largest eigenvalues of the covariance matrix of the predictors grow linearly in the number of predictors (strong signal regime) or sublinearly (weak signal regime). The main result of this paper shows that empirical risk minimization for principal component regression is consistent for prediction and, under appropriate conditions, it achieves optimal performance (up to a logarithmic factor) in both the strong and weak signal regimes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主成分回归的经验风险最小化性能
本文确定了主成分回归经验风险最小化预测性能的界限。我们的分析是非参数分析,即没有指定预测目标和预测因子之间的关系。特别是,我们并不依赖于预测目标由因子模型生成这一假设。在分析中,我们考虑了预测因子协方差矩阵最大特征值随预测因子数量线性增长(强信号机制)或次线性增长(弱信号机制)的情况。本文的主要结果表明,主成分回归的经验风险最小化在预测方面是一致的,而且在适当的条件下,它在强信号和弱信号两种情况下都能达到最佳性能(达到对数因子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1