Momentum Dynamics in Competitive Sports: A Multi-Model Analysis Using TOPSIS and Logistic Regression

Mingpu Ma
{"title":"Momentum Dynamics in Competitive Sports: A Multi-Model Analysis Using TOPSIS and Logistic Regression","authors":"Mingpu Ma","doi":"arxiv-2409.02872","DOIUrl":null,"url":null,"abstract":"This paper explores the concept of \"momentum\" in sports competitions through\nthe use of the TOPSIS model and 0-1 logistic regression model. First, the\nTOPSIS model is employed to evaluate the performance of two tennis players,\nwith visualizations used to analyze the situation's evolution at every moment\nin the match, explaining how \"momentum\" manifests in sports. Then, the 0-1\nlogistic regression model is utilized to verify the impact of \"momentum\" on\nmatch outcomes, demonstrating that fluctuations in player performance and the\nsuccessive occurrence of successes are not random. Additionally, this paper\nexamines the indicators that influence the reversal of game situations by\nanalyzing key match data and testing the accuracy of the models with match\ndata. The findings show that the model accurately explains the conditions\nduring matches and can be generalized to other sports competitions. Finally,\nthe strengths, weaknesses, and potential future improvements of the model are\ndiscussed.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the concept of "momentum" in sports competitions through the use of the TOPSIS model and 0-1 logistic regression model. First, the TOPSIS model is employed to evaluate the performance of two tennis players, with visualizations used to analyze the situation's evolution at every moment in the match, explaining how "momentum" manifests in sports. Then, the 0-1 logistic regression model is utilized to verify the impact of "momentum" on match outcomes, demonstrating that fluctuations in player performance and the successive occurrence of successes are not random. Additionally, this paper examines the indicators that influence the reversal of game situations by analyzing key match data and testing the accuracy of the models with match data. The findings show that the model accurately explains the conditions during matches and can be generalized to other sports competitions. Finally, the strengths, weaknesses, and potential future improvements of the model are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竞技体育中的动量动态:使用 TOPSIS 和 Logistic 回归的多模型分析
本文通过使用 TOPSIS 模型和 0-1 逻辑回归模型,探讨了体育比赛中 "动量 "的概念。首先,采用 TOPSIS 模型对两名网球运动员的表现进行评估,并通过可视化分析比赛中每一时刻的情况变化,解释 "动量 "在体育运动中的表现形式。然后,利用 0-1 逻辑回归模型来验证 "动量 "对比赛结果的影响,证明球员表现的波动和成功的连续出现并非随机。此外,本论文还通过分析关键比赛数据,研究了影响比赛形势逆转的指标,并用比赛数据检验了模型的准确性。研究结果表明,该模型能准确解释比赛中的情况,并可推广到其他体育比赛中。最后,讨论了该模型的优点、缺点和未来可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1