Weighted Regression with Sybil Networks

Nihar Shah
{"title":"Weighted Regression with Sybil Networks","authors":"Nihar Shah","doi":"arxiv-2408.17426","DOIUrl":null,"url":null,"abstract":"In many online domains, Sybil networks -- or cases where a single user\nassumes multiple identities -- is a pervasive feature. This complicates\nexperiments, as off-the-shelf regression estimators at least assume known\nnetwork topologies (if not fully independent observations) when Sybil network\ntopologies in practice are often unknown. The literature has exclusively\nfocused on techniques to detect Sybil networks, leading many experimenters to\nsubsequently exclude suspected networks entirely before estimating treatment\neffects. I present a more efficient solution in the presence of these suspected\nSybil networks: a weighted regression framework that applies weights based on\nthe probabilities that sets of observations are controlled by single actors. I\nshow in the paper that the MSE-minimizing solution is to set the weight matrix\nequal to the inverse of the expected network topology. I demonstrate the\nmethodology on simulated data, and then I apply the technique to a competition\nwith suspected Sybil networks run on the Sui blockchain and show reductions in\nthe standard error of the estimate by 6 - 24%.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many online domains, Sybil networks -- or cases where a single user assumes multiple identities -- is a pervasive feature. This complicates experiments, as off-the-shelf regression estimators at least assume known network topologies (if not fully independent observations) when Sybil network topologies in practice are often unknown. The literature has exclusively focused on techniques to detect Sybil networks, leading many experimenters to subsequently exclude suspected networks entirely before estimating treatment effects. I present a more efficient solution in the presence of these suspected Sybil networks: a weighted regression framework that applies weights based on the probabilities that sets of observations are controlled by single actors. I show in the paper that the MSE-minimizing solution is to set the weight matrix equal to the inverse of the expected network topology. I demonstrate the methodology on simulated data, and then I apply the technique to a competition with suspected Sybil networks run on the Sui blockchain and show reductions in the standard error of the estimate by 6 - 24%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Sybil 网络进行加权回归
在许多在线领域,Sybil 网络(或单个用户假冒多个身份的情况)是一个普遍存在的特征。这使得实验变得复杂,因为现成的回归估计器至少假定网络拓扑结构是已知的(如果不是完全独立的观察结果),而实际上假冒网络拓扑结构往往是未知的。文献只关注检测假网络的技术,导致许多实验者在估计治疗效果之前不得不完全排除可疑网络。我提出了一种更有效的解决方案:加权回归框架,根据观测数据集受单个行为者控制的概率进行加权。我在文中指出,MSE 最小化的解决方案是将权重矩阵设置为预期网络拓扑结构的倒数。我在模拟数据上演示了这一方法,然后将该技术应用于在 Sui 区块链上运行的疑似 Sybil 网络竞赛,结果显示估计值的标准误差减少了 6 - 24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1