Marginal homogeneity tests with panel data

Federico Bugni, Jackson Bunting, Muyang Ren
{"title":"Marginal homogeneity tests with panel data","authors":"Federico Bugni, Jackson Bunting, Muyang Ren","doi":"arxiv-2408.15862","DOIUrl":null,"url":null,"abstract":"A panel dataset satisfies marginal homogeneity if the time-specific marginal\ndistributions are homogeneous or time-invariant. Marginal homogeneity is\nrelevant in economic settings such as dynamic discrete games. In this paper, we\npropose several tests for the hypothesis of marginal homogeneity and\ninvestigate their properties. We consider an asymptotic framework in which the\nnumber of individuals n in the panel diverges, and the number of periods T is\nfixed. We implement our tests by comparing a studentized or non-studentized\nT-sample version of the Cramer-von Mises statistic with a suitable critical\nvalue. We propose three methods to construct the critical value: asymptotic\napproximations, the bootstrap, and time permutations. We show that the first\ntwo methods result in asymptotically exact hypothesis tests. The permutation\ntest based on a non-studentized statistic is asymptotically exact when T=2, but\nis asymptotically invalid when T>2. In contrast, the permutation test based on\na studentized statistic is always asymptotically exact. Finally, under a\ntime-exchangeability assumption, the permutation test is exact in finite\nsamples, both with and without studentization.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A panel dataset satisfies marginal homogeneity if the time-specific marginal distributions are homogeneous or time-invariant. Marginal homogeneity is relevant in economic settings such as dynamic discrete games. In this paper, we propose several tests for the hypothesis of marginal homogeneity and investigate their properties. We consider an asymptotic framework in which the number of individuals n in the panel diverges, and the number of periods T is fixed. We implement our tests by comparing a studentized or non-studentized T-sample version of the Cramer-von Mises statistic with a suitable critical value. We propose three methods to construct the critical value: asymptotic approximations, the bootstrap, and time permutations. We show that the first two methods result in asymptotically exact hypothesis tests. The permutation test based on a non-studentized statistic is asymptotically exact when T=2, but is asymptotically invalid when T>2. In contrast, the permutation test based on a studentized statistic is always asymptotically exact. Finally, under a time-exchangeability assumption, the permutation test is exact in finite samples, both with and without studentization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面板数据的边际同质性检验
如果特定时间的边际分布是同质或时间不变的,那么面板数据集就满足边际同质性。边际同质性与动态离散博弈等经济环境相关。本文提出了边际同质性假设的几种检验方法,并对其性质进行了研究。我们考虑了一个渐进框架,在这个框架中,面板中的个体数 n 是发散的,而周期数 T 是固定的。我们通过比较 Cramer-von Mises 统计量的学生化或非学生化 T 样本版本与合适的临界值来进行检验。我们提出了三种构建临界值的方法:渐近逼近法、自引导法和时间排列法。我们证明,前两种方法可以得出渐近精确的假设检验。当 T=2 时,基于非研究统计量的置换检验在渐近上是精确的,但当 T>2 时,置换检验在渐近上是无效的。最后,在时间可交换性假设下,无论有无学生化,置换检验在有限样本中都是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1