Integrating an agent-based behavioral model in microtransit forecasting and revenue management

Xiyuan Ren, Joseph Y. J. Chow, Venktesh Pandey, Linfei Yuan
{"title":"Integrating an agent-based behavioral model in microtransit forecasting and revenue management","authors":"Xiyuan Ren, Joseph Y. J. Chow, Venktesh Pandey, Linfei Yuan","doi":"arxiv-2408.12577","DOIUrl":null,"url":null,"abstract":"As an IT-enabled multi-passenger mobility service, microtransit has the\npotential to improve accessibility, reduce congestion, and enhance flexibility\nin transportation options. However, due to its heterogeneous impacts on\ndifferent communities and population segments, there is a need for better tools\nin microtransit forecast and revenue management, especially when actual usage\ndata are limited. We propose a novel framework based on an agent-based mixed\nlogit model estimated with microtransit usage data and synthetic trip data. The\nframework involves estimating a lower-branch mode choice model with synthetic\ntrip data, combining lower-branch parameters with microtransit data to estimate\nan upper-branch ride pass subscription model, and applying the nested model to\nevaluate microtransit pricing and subsidy policies. The framework enables\nfurther decision-support analysis to consider diverse travel patterns and\nheterogeneous tastes of the total population. We test the framework in a case\nstudy with synthetic trip data from Replica Inc. and microtransit data from\nArlington Via. The lower-branch model result in a rho-square value of 0.603 on\nweekdays and 0.576 on weekends. Predictions made by the upper-branch model\nclosely match the marginal subscription data. In a ride pass pricing policy\nscenario, we show that a discount in weekly pass (from $25 to $18.9) and\nmonthly pass (from $80 to $71.5) would surprisingly increase total revenue by\n$102/day. In an event- or place-based subsidy policy scenario, we show that a\n100% fare discount would reduce 80 car trips during peak hours at AT&T Stadium,\nrequiring a subsidy of $32,068/year.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an IT-enabled multi-passenger mobility service, microtransit has the potential to improve accessibility, reduce congestion, and enhance flexibility in transportation options. However, due to its heterogeneous impacts on different communities and population segments, there is a need for better tools in microtransit forecast and revenue management, especially when actual usage data are limited. We propose a novel framework based on an agent-based mixed logit model estimated with microtransit usage data and synthetic trip data. The framework involves estimating a lower-branch mode choice model with synthetic trip data, combining lower-branch parameters with microtransit data to estimate an upper-branch ride pass subscription model, and applying the nested model to evaluate microtransit pricing and subsidy policies. The framework enables further decision-support analysis to consider diverse travel patterns and heterogeneous tastes of the total population. We test the framework in a case study with synthetic trip data from Replica Inc. and microtransit data from Arlington Via. The lower-branch model result in a rho-square value of 0.603 on weekdays and 0.576 on weekends. Predictions made by the upper-branch model closely match the marginal subscription data. In a ride pass pricing policy scenario, we show that a discount in weekly pass (from $25 to $18.9) and monthly pass (from $80 to $71.5) would surprisingly increase total revenue by $102/day. In an event- or place-based subsidy policy scenario, we show that a 100% fare discount would reduce 80 car trips during peak hours at AT&T Stadium, requiring a subsidy of $32,068/year.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在微观交通预测和收入管理中整合基于代理的行为模型
作为一种由信息技术支持的多乘客流动服务,微型公交具有改善交通可达性、减少拥堵和提高交通选择灵活性的潜力。然而,由于其对不同社区和人群的影响各不相同,因此需要更好的工具来进行微型公交预测和收入管理,尤其是在实际使用数据有限的情况下。我们提出了一个基于代理混合逻辑模型的新框架,该模型利用微型公交使用数据和合成行程数据进行估算。该框架包括利用合成行程数据估算下分支模式选择模型,将下分支参数与微型公交数据相结合以估算上分支乘车证订购模型,并应用嵌套模型评估微型公交定价和补贴政策。通过该框架可以进行进一步的决策支持分析,以考虑总人口的不同出行模式和异质性品味。我们利用 Replica 公司提供的合成出行数据和阿灵顿 Via 公司提供的微型公交数据进行了案例研究,对该框架进行了测试。下分支模型得出的工作日 rho-square 值为 0.603,周末为 0.576。上分支模型的预测结果与边际订购数据基本吻合。在乘车证定价政策情景下,我们发现周票(从 25 美元降至 18.9 美元)和月票(从 80 美元降至 71.5 美元)的折扣会使总收入出人意料地增加 102 美元/天。在基于活动或地点的补贴政策方案中,我们显示,100% 的票价折扣将减少 AT&T 体育馆高峰时段的 80 次汽车出行,每年需要补贴 32,068 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1