kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation

Mauricio Vargas Sepúlveda
{"title":"kendallknight: Efficient Implementation of Kendall's Correlation Coefficient Computation","authors":"Mauricio Vargas Sepúlveda","doi":"arxiv-2408.09618","DOIUrl":null,"url":null,"abstract":"The kendallknight package introduces an efficient implementation of Kendall's\ncorrelation coefficient computation, significantly improving the processing\ntime for large datasets without sacrificing accuracy. The kendallknight\npackage, following Knight (1966) and posterior literature, reduces the\ncomputational complexity resulting in drastic reductions in computation time,\ntransforming operations that would take minutes or hours into milliseconds or\nminutes, while maintaining precision and correctly handling edge cases and\nerrors. The package is particularly advantageous in econometric and statistical\ncontexts where rapid and accurate calculation of Kendall's correlation\ncoefficient is desirable. Benchmarks demonstrate substantial performance gains\nover the base R implementation, especially for large datasets.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The kendallknight package introduces an efficient implementation of Kendall's correlation coefficient computation, significantly improving the processing time for large datasets without sacrificing accuracy. The kendallknight package, following Knight (1966) and posterior literature, reduces the computational complexity resulting in drastic reductions in computation time, transforming operations that would take minutes or hours into milliseconds or minutes, while maintaining precision and correctly handling edge cases and errors. The package is particularly advantageous in econometric and statistical contexts where rapid and accurate calculation of Kendall's correlation coefficient is desirable. Benchmarks demonstrate substantial performance gains over the base R implementation, especially for large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
kendallknight:肯德尔相关系数计算的高效实现
kendallknight 软件包引入了肯德尔相关系数计算的高效实现方法,在不牺牲准确性的前提下,显著改善了大型数据集的处理时间。kendallknight 软件包遵循 Knight (1966) 和后继文献,降低了计算复杂度,从而大幅减少了计算时间,将需要几分钟或几小时的操作转化为几毫秒或几分钟,同时保持了精度,并正确处理了边缘情况和错误。该软件包在计量经济学和统计领域尤其具有优势,因为这些领域需要快速、准确地计算肯德尔相关系数。基准测试表明,与基本 R 实现相比,该软件包的性能大幅提升,尤其是在大型数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1