Revisiting the Many Instruments Problem using Random Matrix Theory

Helmut Farbmacher, Rebecca Groh, Michael Mühlegger, Gabriel Vollert
{"title":"Revisiting the Many Instruments Problem using Random Matrix Theory","authors":"Helmut Farbmacher, Rebecca Groh, Michael Mühlegger, Gabriel Vollert","doi":"arxiv-2408.08580","DOIUrl":null,"url":null,"abstract":"We use recent results from the theory of random matrices to improve\ninstrumental variables estimation with many instruments. In settings where the\nfirst-stage parameters are dense, we show that Ridge lowers the implicit price\nof a bias adjustment. This comes along with improved (finite-sample) properties\nin the second stage regression. Our theoretical results nest existing results\non bias approximation and bias adjustment. Moreover, it extends them to\nsettings with more instruments than observations.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use recent results from the theory of random matrices to improve instrumental variables estimation with many instruments. In settings where the first-stage parameters are dense, we show that Ridge lowers the implicit price of a bias adjustment. This comes along with improved (finite-sample) properties in the second stage regression. Our theoretical results nest existing results on bias approximation and bias adjustment. Moreover, it extends them to settings with more instruments than observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用随机矩阵理论重新审视众多工具问题
我们利用随机矩阵理论的最新成果来改进多工具的工具变量估计。在第一阶段参数密集的情况下,我们发现 Ridge 降低了偏差调整的隐含代价。同时,这也改善了第二阶段回归的(有限样本)特性。我们的理论结果与现有的偏差逼近和偏差调整结果相吻合。此外,它还将这些结果扩展到了工具多于观测值的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1