Wurood A. Shihab, Ammar A. Razzak Mahmood, Lubna H. Tahtamouni, Mai F. AlSakhen, Sana I. Kanaan, Khaled M. Saleh, Salem R. Yasin
{"title":"In vitro and in silico evaluation of 4'-hydroxy-[1,1'-biphenyl]-4-carbohydrazide Schiff base and oxadiazole derivatives targeting EGFR allosteric site","authors":"Wurood A. Shihab, Ammar A. Razzak Mahmood, Lubna H. Tahtamouni, Mai F. AlSakhen, Sana I. Kanaan, Khaled M. Saleh, Salem R. Yasin","doi":"10.1007/s11696-024-03648-3","DOIUrl":null,"url":null,"abstract":"<div><p>Inhibition of EGFR tyrosine kinase (TK) activity is considered a promising therapeutic strategy for cancer treatment. Type I and II EGFR TK inhibitors bind the ATP-binding site, while type III and IV inhibitors target an allosterically sensitive pocket proximal to the ATP-binding site present in a variety of kinases. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR tyrosine kinase allosteric site inhibitors based on molecular docking studies. A novel series of 4'-hydroxy-[1,1'-biphenyl]-4-carbohydrazide derivatives (<b>W3–W15</b>) were synthesized and characterized using infrared, <sup>1</sup>HNMR, and <sup>13</sup>CNMR spectroscopy, and high-resolution mass spectrometry. Compound <b>W4</b> had a favorable pharmacophore-fit score suggesting that it may have biological activity similar to the reference 6DUK (EGFR with bound allosteric inhibitor). Compound <b>W4</b> exhibited a favorable ΔG score against EGFR TK allosteric site indicating a high likelihood of compound-receptor complex formation, and it was predicted to be non-carcinogenic and non-irritant. Compounds <b>W3</b>–<b>W7</b> demonstrated selective cytotoxicity towards the A549 lung cancer cell line as compared to the other two cell lines investigated (HCT-116 colorectal and HeLa cervical cancer cells). Compound <b>W4</b>’s IC<sub>50</sub> value against A549 cancer cells (0.4 µM) was 20-fold lower than <b>Erlotinib</b>’s (7.3 µM). Finally, compound <b>W4</b> targeted EGFR TK in the A549 cell line, causing cell cycle arrest at the G2/M phase and activating the extrinsic apoptotic pathway. In conclusion, compound <b>W4</b> is a promising EGFR tyrosine kinase allosteric inhibitor that is worthy of further investigation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 14","pages":"7951 - 7971"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03648-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of EGFR tyrosine kinase (TK) activity is considered a promising therapeutic strategy for cancer treatment. Type I and II EGFR TK inhibitors bind the ATP-binding site, while type III and IV inhibitors target an allosterically sensitive pocket proximal to the ATP-binding site present in a variety of kinases. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR tyrosine kinase allosteric site inhibitors based on molecular docking studies. A novel series of 4'-hydroxy-[1,1'-biphenyl]-4-carbohydrazide derivatives (W3–W15) were synthesized and characterized using infrared, 1HNMR, and 13CNMR spectroscopy, and high-resolution mass spectrometry. Compound W4 had a favorable pharmacophore-fit score suggesting that it may have biological activity similar to the reference 6DUK (EGFR with bound allosteric inhibitor). Compound W4 exhibited a favorable ΔG score against EGFR TK allosteric site indicating a high likelihood of compound-receptor complex formation, and it was predicted to be non-carcinogenic and non-irritant. Compounds W3–W7 demonstrated selective cytotoxicity towards the A549 lung cancer cell line as compared to the other two cell lines investigated (HCT-116 colorectal and HeLa cervical cancer cells). Compound W4’s IC50 value against A549 cancer cells (0.4 µM) was 20-fold lower than Erlotinib’s (7.3 µM). Finally, compound W4 targeted EGFR TK in the A549 cell line, causing cell cycle arrest at the G2/M phase and activating the extrinsic apoptotic pathway. In conclusion, compound W4 is a promising EGFR tyrosine kinase allosteric inhibitor that is worthy of further investigation.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.