Inserting colloidal quantum dots into GaN Mesa-array subsurface porous structures through electrochemical etching for display color conversion application.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-09-11 DOI:10.1088/1361-6528/ad7962
Shaobo Yang,Chun-Jui Chu,Zong-Han Li,Wei-Cheng Chen,Hsi-Yu Feng,C C Yang
{"title":"Inserting colloidal quantum dots into GaN Mesa-array subsurface porous structures through electrochemical etching for display color conversion application.","authors":"Shaobo Yang,Chun-Jui Chu,Zong-Han Li,Wei-Cheng Chen,Hsi-Yu Feng,C C Yang","doi":"10.1088/1361-6528/ad7962","DOIUrl":null,"url":null,"abstract":"High-efficiency photon color conversion is an approach of great potential for implementing color display. Inspired by the observation of emission enhancement in a nanoscale cavity, a novel technique to fabricate an array of color converter by mixing colloidal quantum dots (QDs) with the electrolyte of an electrochemical etching (ECE) process is demonstrated. In this process, QDs flow with the electrolyte into the etched subsurface nanoscale porous structure (PS) and settle inside. Since the PS formation and hence QD insertion are controlled by the flow path of the applied electric current in the ECE process, this technique can be used for fabricating any graphic pattern. The nanostructure of such a QD-inserted mesa is examined to confirm QD insertion. Although only single-color mesa arrays are demonstrated in this paper, this technique can be used for fabricating a multiple-color mesa array if a QD or a light-emitting nanoparticle of higher thermal stability is available.","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad7962","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-efficiency photon color conversion is an approach of great potential for implementing color display. Inspired by the observation of emission enhancement in a nanoscale cavity, a novel technique to fabricate an array of color converter by mixing colloidal quantum dots (QDs) with the electrolyte of an electrochemical etching (ECE) process is demonstrated. In this process, QDs flow with the electrolyte into the etched subsurface nanoscale porous structure (PS) and settle inside. Since the PS formation and hence QD insertion are controlled by the flow path of the applied electric current in the ECE process, this technique can be used for fabricating any graphic pattern. The nanostructure of such a QD-inserted mesa is examined to confirm QD insertion. Although only single-color mesa arrays are demonstrated in this paper, this technique can be used for fabricating a multiple-color mesa array if a QD or a light-emitting nanoparticle of higher thermal stability is available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电化学蚀刻将胶体量子点插入 GaN Mesa-array 亚表面多孔结构,用于显示器色彩转换应用。
高效光子色彩转换是实现彩色显示的一种极具潜力的方法。受纳米级空腔中发射增强观测的启发,一种通过将胶体量子点(QDs)与电化学蚀刻(ECE)工艺的电解液混合来制造色彩转换器阵列的新技术得到了展示。在此过程中,QDs 与电解质一起流入蚀刻的次表面纳米级多孔结构(PS)并在内部沉积。由于 PS 的形成以及 QD 的插入是由 ECE 工艺中外加电流的流动路径控制的,因此该技术可用于制造任何图形图案。我们对这种插入 QD 的网格的纳米结构进行了检查,以确认 QD 的插入。虽然本文只展示了单色网格阵列,但如果有热稳定性更高的 QD 或发光纳米粒子,这种技术也可用于制作多色网格阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
High performance and nearly wake-up free Hf0.5Zr0.5O2ferroelectric capacitor realized by middle layer strategy with BEOL compatibility. Photoinduced modulation and the effect of CNT loading on field effect transistor characteristics of CNT/ZnO/PVDF composite. Self-supply of hydrogen peroxide by a bimetal-based nanocatalytic platform to enhance chemodynamic therapy for tumor treatment. Room-temperature infrared photoluminescence and broadband photodetection characteristics of Ge/GeSi islands on silicon-on-insulator. Nanoimprinting and backside ultraviolet lithography for fabricating metal nanostructures with higher aspect ratio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1