Kedi Hu, William Fu, Alan C. West, Daniel A. Steingart
{"title":"Dry-Pressed Fabrication of Lithium-Ion Electrodes Over 500 μm Thick","authors":"Kedi Hu, William Fu, Alan C. West, Daniel A. Steingart","doi":"10.1002/batt.202400301","DOIUrl":null,"url":null,"abstract":"<p>In stationary storage, thick electrodes can minimize inactive material components to increase energy density and decrease cost, but they face challenges in performance and manufacturability. This work discusses a method to fabricate thick-format lithium-ion electrodes and a model to explore transport constraints for functional thick electrodes. Thick lithium iron phosphate (LFP) electrodes were fabricated using a solvent-free pressing process that adopts methods from alkaline electrode manufacturing for low-cost scale-up. LFP electrodes with thicknesses up to 1 mm and capacities up to ~15 mAh/cm<sup>2</sup> exhibited good rate performance (~98 % utilization at C/10, ~95 % at C/5, ~76 % at C/2). A physics-based LFP half-cell model was developed to aid in characterizing transport within these thick electrodes, revealing opportunities to further improve performance by decreasing tortuosity.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400301","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In stationary storage, thick electrodes can minimize inactive material components to increase energy density and decrease cost, but they face challenges in performance and manufacturability. This work discusses a method to fabricate thick-format lithium-ion electrodes and a model to explore transport constraints for functional thick electrodes. Thick lithium iron phosphate (LFP) electrodes were fabricated using a solvent-free pressing process that adopts methods from alkaline electrode manufacturing for low-cost scale-up. LFP electrodes with thicknesses up to 1 mm and capacities up to ~15 mAh/cm2 exhibited good rate performance (~98 % utilization at C/10, ~95 % at C/5, ~76 % at C/2). A physics-based LFP half-cell model was developed to aid in characterizing transport within these thick electrodes, revealing opportunities to further improve performance by decreasing tortuosity.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.