{"title":"A Review on the Role of Hydrogen Bonds in Organic Electrode Materials","authors":"Yonghui Wang, Yuxuan Zhao, Xinlei Xu, Weizhe Gao, Qichun Zhang, Weiwei Huang","doi":"10.1002/batt.202400440","DOIUrl":null,"url":null,"abstract":"<p>Organic electrode materials (OEMs) hold significant development potential in the field of batteries and are regarded as excellent complementary materials to resource-limited inorganic electrode materials, which have recently been the subject of extensive research. As research deepens, an increasing number of scholars recognize the influence of weak bond interactions on the properties of OEMs. Generally, weak bond interactions have more pronounced effects on organic materials compared to inorganic ones. Among various weak interactions, hydrogen bonds are particularly noteworthy, having been proven to play crucial roles in adjusting electrode charge distribution, stabilizing crystal structures, and inhibiting cyclic dissolution. The studies of hydrogen bonds in OEMs are therefore of paramount importance for guiding their future development. In this review, we primarily summarize the research progress in hydrogen bond science within OEMs and discuss future research directions and development prospects in this area. Hoping to provide valuable references for the advancement of OEMs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400440","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic electrode materials (OEMs) hold significant development potential in the field of batteries and are regarded as excellent complementary materials to resource-limited inorganic electrode materials, which have recently been the subject of extensive research. As research deepens, an increasing number of scholars recognize the influence of weak bond interactions on the properties of OEMs. Generally, weak bond interactions have more pronounced effects on organic materials compared to inorganic ones. Among various weak interactions, hydrogen bonds are particularly noteworthy, having been proven to play crucial roles in adjusting electrode charge distribution, stabilizing crystal structures, and inhibiting cyclic dissolution. The studies of hydrogen bonds in OEMs are therefore of paramount importance for guiding their future development. In this review, we primarily summarize the research progress in hydrogen bond science within OEMs and discuss future research directions and development prospects in this area. Hoping to provide valuable references for the advancement of OEMs.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.