The Role and Substitution of Cobalt in the Cobalt-Lean/Free Nickel-Based Layered Transition Metal Oxides for Lithium Ion Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-09-04 DOI:10.1002/batt.202400437
Taifan Yang, Zhenxin Huang, Chengyong Shu, Xiaowei Wang, Zexun Tang, Wei Tang, Kai Zhu, Yuping Wu
{"title":"The Role and Substitution of Cobalt in the Cobalt-Lean/Free Nickel-Based Layered Transition Metal Oxides for Lithium Ion Batteries","authors":"Taifan Yang,&nbsp;Zhenxin Huang,&nbsp;Chengyong Shu,&nbsp;Xiaowei Wang,&nbsp;Zexun Tang,&nbsp;Wei Tang,&nbsp;Kai Zhu,&nbsp;Yuping Wu","doi":"10.1002/batt.202400437","DOIUrl":null,"url":null,"abstract":"<p>The Nickel-based layered transition metal oxide cathode represented by NCM (LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>z</sub>O<sub>2</sub>, x+y+z=1) and NCA (LiNi<sub>x</sub>Co<sub>y</sub>Al<sub>z</sub>O<sub>2</sub>, x+y+z=1) is widely used in the electric vehicle market due to its specific capacity and high working potential, in which Cobalt (Co) plays a huge role in improving the structural stability during the cycle. However, the limited supply of Co, due to its scarcity and the influence of geopolitics, poses a significant constraint on the further advancement of the Nickel-based layered transition metal oxide cathode in the field of energy storage. In this paper, the mechanism of Co in the Nickel-based layered transition metal oxides is reviewed, including its critical role for structural stability such as the inhibition of cationic mixing and the release of lattice oxygen et al. Subsequently, it outlines various strategies to enhance the performance of Co-lean/free materials, such as ion doping, including single-ion doping and multi-ion co-doping, and various surface coating strategies, so as to eliminate the adverse effects of Co loss on materials. Ultimately, this paper offers a glimpse into the promising future of Cobalt-free strategies for high performance of Nickel-based layered transition metal oxides.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400437","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The Nickel-based layered transition metal oxide cathode represented by NCM (LiNixCoyMnzO2, x+y+z=1) and NCA (LiNixCoyAlzO2, x+y+z=1) is widely used in the electric vehicle market due to its specific capacity and high working potential, in which Cobalt (Co) plays a huge role in improving the structural stability during the cycle. However, the limited supply of Co, due to its scarcity and the influence of geopolitics, poses a significant constraint on the further advancement of the Nickel-based layered transition metal oxide cathode in the field of energy storage. In this paper, the mechanism of Co in the Nickel-based layered transition metal oxides is reviewed, including its critical role for structural stability such as the inhibition of cationic mixing and the release of lattice oxygen et al. Subsequently, it outlines various strategies to enhance the performance of Co-lean/free materials, such as ion doping, including single-ion doping and multi-ion co-doping, and various surface coating strategies, so as to eliminate the adverse effects of Co loss on materials. Ultimately, this paper offers a glimpse into the promising future of Cobalt-free strategies for high performance of Nickel-based layered transition metal oxides.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴在用于锂离子电池的无钴/无镍层状过渡金属氧化物中的作用和替代物
以 NCM(LiNixCoyMnzO2,x+ y + z = 1)和 NCA(LiNixCoyAlzO2,x+ y + z = 1)为代表的镍基层状过渡金属氧化物阴极因其比容量和高工作潜能而广泛应用于电动汽车市场,其中钴(Co)在提高循环过程中的结构稳定性方面发挥了巨大作用。然而,由于钴的稀缺性和地缘政治的影响,钴的供应有限,这严重制约了镍基层状过渡金属氧化物阴极在储能领域的进一步发展。本文综述了镍基层状过渡金属氧化物中钴的作用机理,包括钴对结构稳定性的关键作用,如抑制阳离子混合和释放晶格氧等,随后总结了提高无钴材料性能的各种策略,如离子掺杂(包括单离子掺杂和多离子共掺杂)和各种表面涂层策略,以消除钴损耗对材料的不利影响。最终,本文让人们看到了镍基层状过渡金属氧化物高性能化的无钴战略的美好前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025) Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025) Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025) Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024) Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1