Priya Angadiyavar, Rakshitha K. Jain, Dhanya Sunil, M. M. Apoorva, Poornima Bhagavath
{"title":"Blue light excitable fluorescent green security ink for anticounterfeit application","authors":"Priya Angadiyavar, Rakshitha K. Jain, Dhanya Sunil, M. M. Apoorva, Poornima Bhagavath","doi":"10.1007/s11998-024-00975-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent security printing inks on flexible substrates is an arena that demands consistent developments to prevent the ever increasing menace of document/product counterfeiting. Visible light is a much more accessible and safer excitation source than the commonly used ultraviolet (UV) light. In this context, a simple Schiff base 4-pyridyl-benzylidene 2,4-difluoro aniline (PBDFA) is synthesized as a colorant with significant solid-state fluorescence for preparing security ink formulation. A huge challenge lies in preparing a security ink that does not fluoresce under UV light but produces a green fluorescence when irradiated with a blue light source. Such prints would be hard to forge as compared to the existing UV luminescent security inks. The screen prints obtained on a UV dull paper substrate using the solvent-based PBDFA ink revealed good blue light excitable green fluorescence, photostability, and colorimetric, densitometric, and rub resistance characteristics.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2195 - 2200"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00975-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00975-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent security printing inks on flexible substrates is an arena that demands consistent developments to prevent the ever increasing menace of document/product counterfeiting. Visible light is a much more accessible and safer excitation source than the commonly used ultraviolet (UV) light. In this context, a simple Schiff base 4-pyridyl-benzylidene 2,4-difluoro aniline (PBDFA) is synthesized as a colorant with significant solid-state fluorescence for preparing security ink formulation. A huge challenge lies in preparing a security ink that does not fluoresce under UV light but produces a green fluorescence when irradiated with a blue light source. Such prints would be hard to forge as compared to the existing UV luminescent security inks. The screen prints obtained on a UV dull paper substrate using the solvent-based PBDFA ink revealed good blue light excitable green fluorescence, photostability, and colorimetric, densitometric, and rub resistance characteristics.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.