Cassava waste as an animal feed treatment: past and future

IF 8.6 1区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Reviews in Environmental Science and Bio/Technology Pub Date : 2024-08-21 DOI:10.1007/s11157-024-09701-7
Fatimah I. Jumare, Madihah Md. Salleh, Nurashikin Ihsan, Huszalina Hussin
{"title":"Cassava waste as an animal feed treatment: past and future","authors":"Fatimah I. Jumare,&nbsp;Madihah Md. Salleh,&nbsp;Nurashikin Ihsan,&nbsp;Huszalina Hussin","doi":"10.1007/s11157-024-09701-7","DOIUrl":null,"url":null,"abstract":"<div><p>In many countries, scientists have developed techniques and processing methods to minimize animal feed waste and costs. The agricultural waste from each part of the cassava plant is rich in macronutrients, essential amino acids, vitamins, and minerals, making it a potential candidate to be used as animal feed. However, the significant content of anti-nutritional properties in cassava, which are linked with the indigestibility of the animal, led to controversy regarding the strategy to use cassava as highly commercialized animal feed. Among the anti-nutritional compounds found in cassava waste, cyanide was found to have the most negative effect on the animals upon feed consumption. Therefore, several strategies to maintain the homeostasis of nutrient and non-nutrient compounds improved the production and commercialization of cassava waste-based animal feed. Physical pretreatment, microbial pretreatment, and fermentation significantly reduced the cyanide content in the cassava waste. In terms of fermentation, solid-state fermentation of moist, solid, non-soluble organic material acts as a nutrient and energy source. Factors such as moisture content, particle size, temperature, pH, media composition, choice of microbial inoculum, and inoculum density were important to increase protein content, improve digestibility, amino acids, enzymes, and vitamins. The impact of using cassava waste as animal feed replacement was significant on the digestibility, growth performance, and changes in blood parameters of the animals. Despite the challenges in nutrient content and biological action, the accessibility and availability of cassava in different geographical areas also pose significant challenges. Therefore, applying technological advancements, particularly in enhancing the nutritional content and biological mechanisms, is important, with the implementation of advanced research and collaboration with industries and other stakeholders.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 3","pages":"839 - 868"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09701-7","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In many countries, scientists have developed techniques and processing methods to minimize animal feed waste and costs. The agricultural waste from each part of the cassava plant is rich in macronutrients, essential amino acids, vitamins, and minerals, making it a potential candidate to be used as animal feed. However, the significant content of anti-nutritional properties in cassava, which are linked with the indigestibility of the animal, led to controversy regarding the strategy to use cassava as highly commercialized animal feed. Among the anti-nutritional compounds found in cassava waste, cyanide was found to have the most negative effect on the animals upon feed consumption. Therefore, several strategies to maintain the homeostasis of nutrient and non-nutrient compounds improved the production and commercialization of cassava waste-based animal feed. Physical pretreatment, microbial pretreatment, and fermentation significantly reduced the cyanide content in the cassava waste. In terms of fermentation, solid-state fermentation of moist, solid, non-soluble organic material acts as a nutrient and energy source. Factors such as moisture content, particle size, temperature, pH, media composition, choice of microbial inoculum, and inoculum density were important to increase protein content, improve digestibility, amino acids, enzymes, and vitamins. The impact of using cassava waste as animal feed replacement was significant on the digestibility, growth performance, and changes in blood parameters of the animals. Despite the challenges in nutrient content and biological action, the accessibility and availability of cassava in different geographical areas also pose significant challenges. Therefore, applying technological advancements, particularly in enhancing the nutritional content and biological mechanisms, is important, with the implementation of advanced research and collaboration with industries and other stakeholders.

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木薯废料作为动物饲料的处理方法:过去与未来
许多国家的科学家已经开发出各种技术和加工方法,以尽量减少动物饲料的浪费和成本。木薯植物各部分的农业废弃物含有丰富的宏量营养素、必需氨基酸、维生素和矿物质,是用作动物饲料的潜在候选材料。然而,木薯中含有大量的抗营养物质,这些物质与动物的不消化性有关,导致人们对将木薯用作高度商业化的动物饲料的策略产生争议。在木薯废料中发现的抗营养化合物中,氰化物对动物食用饲料的负面影响最大。因此,几种维持营养和非营养化合物平衡的策略改善了以木薯废料为基础的动物饲料的生产和商业化。物理预处理、微生物预处理和发酵显著降低了木薯废料中的氰化物含量。在发酵方面,潮湿、固体、非可溶性有机物的固态发酵可作为营养和能量来源。水分含量、颗粒大小、温度、pH 值、培养基成分、微生物接种物的选择和接种密度等因素对增加蛋白质含量、提高消化率、氨基酸、酶和维生素都很重要。使用木薯废料作为动物饲料替代品对动物的消化率、生长性能和血液参数变化有显著影响。尽管在营养成分和生物作用方面存在挑战,但木薯在不同地理区域的可获得性和可用性也构成了重大挑战。因此,应用技术进步,特别是提高营养成分和生物机制方面的技术进步非常重要,同时还要开展先进的研究,并与工业界和其他利益相关者合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Environmental Science and Bio/Technology
Reviews in Environmental Science and Bio/Technology Environmental Science-Waste Management and Disposal
CiteScore
25.00
自引率
1.40%
发文量
37
审稿时长
4.5 months
期刊介绍: Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.
期刊最新文献
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—a critical review Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates Biochar: a potential and green adsorbent for antibiotics removal from aqueous solution Unveiling the evolution of anaerobic membrane bioreactors: applications, fouling issues, and future perspective in wastewater treatment Correction to: Harnessing green tide Ulva biomass for carbon dioxide sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1