{"title":"How educational chatbots support self-regulated learning? A systematic review of the literature","authors":"Rui Guan, Mladen Raković, Guanliang Chen, Dragan Gašević","doi":"10.1007/s10639-024-12881-y","DOIUrl":null,"url":null,"abstract":"<p>Engagement in self-regulated learning (SRL) may improve academic achievements and support development of lifelong learning skills. Despite its educational potential, many students find SRL challenging. Educational chatbots have a potential to scaffold or externally regulate SRL processes by interacting with students in an adaptive way. However, to our knowledge, researchers have yet to learn whether and how educational chatbots developed so far have (1) promoted learning processes pertaining to SRL and (2) improved student learning performance in different tasks. To contribute this new knowledge to the field, we conducted a systematic literature review of the studies on educational chatbots that can be linked to processes of SRL. In doing so, we followed the PRISMA guidelines. We collected and reviewed publications published between 2012 and 2023, and identified 27 publications for analysis. We found that educational chatbots so far have mainly supported learners to identify learning resources, enact appropriate learning strategies, and metacognitively monitor their studying. Limited guidance has been provided to students to set learning goals, create learning plans, reflect on their prior studying, and adapt to their future studying. Most of the chatbots in the reviewed corpus of studies appeared to promote productive SRL processes and boost learning performance of students across different domains, confirming the potential of this technology to support SRL. However, in some studies the chatbot interventions showed non-significant and mixed effects. In this paper, we also discuss the findings and provide recommendations for future research.</p>","PeriodicalId":51494,"journal":{"name":"Education and Information Technologies","volume":"67 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education and Information Technologies","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10639-024-12881-y","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Engagement in self-regulated learning (SRL) may improve academic achievements and support development of lifelong learning skills. Despite its educational potential, many students find SRL challenging. Educational chatbots have a potential to scaffold or externally regulate SRL processes by interacting with students in an adaptive way. However, to our knowledge, researchers have yet to learn whether and how educational chatbots developed so far have (1) promoted learning processes pertaining to SRL and (2) improved student learning performance in different tasks. To contribute this new knowledge to the field, we conducted a systematic literature review of the studies on educational chatbots that can be linked to processes of SRL. In doing so, we followed the PRISMA guidelines. We collected and reviewed publications published between 2012 and 2023, and identified 27 publications for analysis. We found that educational chatbots so far have mainly supported learners to identify learning resources, enact appropriate learning strategies, and metacognitively monitor their studying. Limited guidance has been provided to students to set learning goals, create learning plans, reflect on their prior studying, and adapt to their future studying. Most of the chatbots in the reviewed corpus of studies appeared to promote productive SRL processes and boost learning performance of students across different domains, confirming the potential of this technology to support SRL. However, in some studies the chatbot interventions showed non-significant and mixed effects. In this paper, we also discuss the findings and provide recommendations for future research.
期刊介绍:
The Journal of Education and Information Technologies (EAIT) is a platform for the range of debates and issues in the field of Computing Education as well as the many uses of information and communication technology (ICT) across many educational subjects and sectors. It probes the use of computing to improve education and learning in a variety of settings, platforms and environments.
The journal aims to provide perspectives at all levels, from the micro level of specific pedagogical approaches in Computing Education and applications or instances of use in classrooms, to macro concerns of national policies and major projects; from pre-school classes to adults in tertiary institutions; from teachers and administrators to researchers and designers; from institutions to online and lifelong learning. The journal is embedded in the research and practice of professionals within the contemporary global context and its breadth and scope encourage debate on fundamental issues at all levels and from different research paradigms and learning theories. The journal does not proselytize on behalf of the technologies (whether they be mobile, desktop, interactive, virtual, games-based or learning management systems) but rather provokes debate on all the complex relationships within and between computing and education, whether they are in informal or formal settings. It probes state of the art technologies in Computing Education and it also considers the design and evaluation of digital educational artefacts. The journal aims to maintain and expand its international standing by careful selection on merit of the papers submitted, thus providing a credible ongoing forum for debate and scholarly discourse. Special Issues are occasionally published to cover particular issues in depth. EAIT invites readers to submit papers that draw inferences, probe theory and create new knowledge that informs practice, policy and scholarship. Readers are also invited to comment and reflect upon the argument and opinions published. EAIT is the official journal of the Technical Committee on Education of the International Federation for Information Processing (IFIP) in partnership with UNESCO.