Nitrile hydratase as a promising biocatalyst: recent advances and future prospects

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-13 DOI:10.1007/s10529-024-03530-y
Chao Feng, Jing Chen, Wenxin Ye, Zhanshi Wang
{"title":"Nitrile hydratase as a promising biocatalyst: recent advances and future prospects","authors":"Chao Feng, Jing Chen, Wenxin Ye, Zhanshi Wang","doi":"10.1007/s10529-024-03530-y","DOIUrl":null,"url":null,"abstract":"<p>Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03530-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腈水解酶作为一种前景广阔的生物催化剂:最新进展与未来展望
酰胺是化工、农用化学品、制药和保健品行业使用的一种重要合成中间体。将腈转化为相应酰胺的传统化学工艺是可行的,但由于所需的条件苛刻而受到限制。近几十年来,腈水解酶(NHase,EC 4.2.1.84)作为一种重要的生物催化剂在腈转化中的应用引起了广泛关注。在这篇综述中,我们将根据腈水解酶的特点和催化机理,从天然分布、酶筛选和分子修饰等方面全面介绍腈水解酶研究的最新进展。此外,我们还系统地总结了 NHase 生物工程和固定化技术的工业应用和最新重大生物技术进展。此外,还讨论了其在绿色化学工业应用中进一步发展的当前挑战和未来前景。本研究为当前最先进的技术做出了贡献,为 NHase 在制造业中的新应用提供了重要的技术信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1