{"title":"Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model","authors":"Kahina Bedda","doi":"10.1134/S0965544124040066","DOIUrl":null,"url":null,"abstract":"<p>An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 6","pages":"648 - 656"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124040066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.