{"title":"Examining self-regulation models of programming students in visual environments: A bottom-up analysis of learning behaviour","authors":"Zhaojun Duo, Jianan Zhang, Yonggong Ren, Xiaolu Xu","doi":"10.1007/s10639-024-13016-z","DOIUrl":null,"url":null,"abstract":"<p><i>Self-regulated learning (SRL)</i> significantly impacts the process and outcome of <i>programming problem-solving</i>. Studies on SRL behavioural patterns of programming students based on trace data are limited in number and lack of coverage. In this study, hence, the Hidden Markov Model (HMM) was employed to probabilistically mine trace data from a visual programming learning platform, intending to unveil students’ SRL states and patterns during programming problem-solving in a bottom-up manner. Furthermore, the K-means clustering technique was utilized to cluster the Online Self-regulated Learning Questionnaire (OSLQ) survey data, enabling the investigation of prominent behavioural characteristics and patterns among students with differing levels of SRL. The results show that programming problem-solving involves five SRL states: problem information processing, task decomposition and planning, goal-oriented knowledge reconstruction, data modelling and solution formulating. Students with a high level of SRL are more engaged in the problem information processing stage, where they plan task objectives and develop problem-solving strategies by profoundly analyzing the structural relationships of the problem. In contrast, students with low levels of SRL decompose the problem and develop a strategic approach through interacting with the knowledge content, which results in a certain blindness in the problem-solving process.</p>","PeriodicalId":51494,"journal":{"name":"Education and Information Technologies","volume":"6 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education and Information Technologies","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10639-024-13016-z","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Self-regulated learning (SRL) significantly impacts the process and outcome of programming problem-solving. Studies on SRL behavioural patterns of programming students based on trace data are limited in number and lack of coverage. In this study, hence, the Hidden Markov Model (HMM) was employed to probabilistically mine trace data from a visual programming learning platform, intending to unveil students’ SRL states and patterns during programming problem-solving in a bottom-up manner. Furthermore, the K-means clustering technique was utilized to cluster the Online Self-regulated Learning Questionnaire (OSLQ) survey data, enabling the investigation of prominent behavioural characteristics and patterns among students with differing levels of SRL. The results show that programming problem-solving involves five SRL states: problem information processing, task decomposition and planning, goal-oriented knowledge reconstruction, data modelling and solution formulating. Students with a high level of SRL are more engaged in the problem information processing stage, where they plan task objectives and develop problem-solving strategies by profoundly analyzing the structural relationships of the problem. In contrast, students with low levels of SRL decompose the problem and develop a strategic approach through interacting with the knowledge content, which results in a certain blindness in the problem-solving process.
期刊介绍:
The Journal of Education and Information Technologies (EAIT) is a platform for the range of debates and issues in the field of Computing Education as well as the many uses of information and communication technology (ICT) across many educational subjects and sectors. It probes the use of computing to improve education and learning in a variety of settings, platforms and environments.
The journal aims to provide perspectives at all levels, from the micro level of specific pedagogical approaches in Computing Education and applications or instances of use in classrooms, to macro concerns of national policies and major projects; from pre-school classes to adults in tertiary institutions; from teachers and administrators to researchers and designers; from institutions to online and lifelong learning. The journal is embedded in the research and practice of professionals within the contemporary global context and its breadth and scope encourage debate on fundamental issues at all levels and from different research paradigms and learning theories. The journal does not proselytize on behalf of the technologies (whether they be mobile, desktop, interactive, virtual, games-based or learning management systems) but rather provokes debate on all the complex relationships within and between computing and education, whether they are in informal or formal settings. It probes state of the art technologies in Computing Education and it also considers the design and evaluation of digital educational artefacts. The journal aims to maintain and expand its international standing by careful selection on merit of the papers submitted, thus providing a credible ongoing forum for debate and scholarly discourse. Special Issues are occasionally published to cover particular issues in depth. EAIT invites readers to submit papers that draw inferences, probe theory and create new knowledge that informs practice, policy and scholarship. Readers are also invited to comment and reflect upon the argument and opinions published. EAIT is the official journal of the Technical Committee on Education of the International Federation for Information Processing (IFIP) in partnership with UNESCO.