QoE Estimation Across Different Cloud Gaming Services Using Transfer Learning

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-08-28 DOI:10.1109/TNSM.2024.3451300
Marcos Carvalho;Daniel Soares;Daniel Fernandes Macedo
{"title":"QoE Estimation Across Different Cloud Gaming Services Using Transfer Learning","authors":"Marcos Carvalho;Daniel Soares;Daniel Fernandes Macedo","doi":"10.1109/TNSM.2024.3451300","DOIUrl":null,"url":null,"abstract":"Cloud Gaming (CG) has become one of the most important cloud-based services in recent years by providing games to different end-network devices, such as personal computers (wired network) and smartphones/tablets (mobile network). CG services stand challenging for network operators since this service demands rigorous network Quality of Services (QoS). Nevertheless, ensuring proper Quality of Experience (QoE) keeps the end-users engaged in the CG services. However, several factors influence users’ experience, such as context (i.e., game type/players) and the end-network type (wired/mobile). In this case, Machine Learning (ML) models have achieved the state-of-the-art on the end-users’ QoE estimation. Despite that, traditional ML models demand a larger amount of data and assume that the training and test have the same distribution, which can make the ML models hard to generalize to other scenarios from what was trained. This work employs Transfer Learning (TL) techniques to create QoE estimation over different cloud gaming services (wired/mobile) and contexts (game type/players). We improved our previous work by performing a subjective QoE assessment with real users playing new games on a mobile cloud gaming testbed. Results show that transfer learning can decrease the average MSE error by at least 34.7% compared to the source model (wired) performance on the mobile cloud gaming and to 81.5% compared with the model trained from scratch.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"5935-5946"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654293/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud Gaming (CG) has become one of the most important cloud-based services in recent years by providing games to different end-network devices, such as personal computers (wired network) and smartphones/tablets (mobile network). CG services stand challenging for network operators since this service demands rigorous network Quality of Services (QoS). Nevertheless, ensuring proper Quality of Experience (QoE) keeps the end-users engaged in the CG services. However, several factors influence users’ experience, such as context (i.e., game type/players) and the end-network type (wired/mobile). In this case, Machine Learning (ML) models have achieved the state-of-the-art on the end-users’ QoE estimation. Despite that, traditional ML models demand a larger amount of data and assume that the training and test have the same distribution, which can make the ML models hard to generalize to other scenarios from what was trained. This work employs Transfer Learning (TL) techniques to create QoE estimation over different cloud gaming services (wired/mobile) and contexts (game type/players). We improved our previous work by performing a subjective QoE assessment with real users playing new games on a mobile cloud gaming testbed. Results show that transfer learning can decrease the average MSE error by at least 34.7% compared to the source model (wired) performance on the mobile cloud gaming and to 81.5% compared with the model trained from scratch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用迁移学习估计不同云游戏服务的 QoE
云游戏(CG)通过向不同的终端网络设备(如个人电脑(有线网络)和智能手机/平板电脑(移动网络))提供游戏,近年来已成为最重要的基于云的服务之一。CG业务对网络运营商来说是一个挑战,因为它需要严格的网络服务质量(QoS)。然而,确保适当的体验质量(QoE)可以使最终用户参与CG服务。然而,有几个因素会影响用户的体验,例如环境(即游戏类型/玩家)和终端网络类型(有线/移动)。在这种情况下,机器学习(ML)模型在最终用户的QoE估计上达到了最先进的水平。尽管如此,传统的机器学习模型需要大量的数据,并且假设训练和测试具有相同的分布,这使得机器学习模型很难从训练的内容推广到其他场景。这项工作使用迁移学习(TL)技术在不同的云游戏服务(有线/移动)和环境(游戏类型/玩家)上创建QoE估计。我们通过对在移动云游戏测试平台上玩新游戏的真实用户进行主观QoE评估来改进之前的工作。结果表明,与源模型(有线)在移动云游戏上的表现相比,迁移学习可以将平均MSE误差降低至少34.7%,与从头开始训练的模型相比,迁移学习可以将平均MSE误差降低81.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1