Analysis of the Availability Curve of the 15 kW Wind–Solar Hybrid Microplant Associated with the Demand of the Power-to-Gas (PtG) Pilot Plant Located at University of La Guajira
Leonel Alfredo Noriega de la Cruz, Dario Serrano-Florez, Marlon Bastidas-Barranco
{"title":"Analysis of the Availability Curve of the 15 kW Wind–Solar Hybrid Microplant Associated with the Demand of the Power-to-Gas (PtG) Pilot Plant Located at University of La Guajira","authors":"Leonel Alfredo Noriega de la Cruz, Dario Serrano-Florez, Marlon Bastidas-Barranco","doi":"10.3390/pr12091903","DOIUrl":null,"url":null,"abstract":"This article presents a detailed analysis of the energy availability of a 15 kW hybrid wind–solar photovoltaic microplant, designed to supply the electricity demand of the power-to-gas (PtG) pilot plant located at the University of La Guajira, Colombia. The study addresses the lack of specific data on the energy availability curve, which is essential for quantifying the production percentages of green hydrogen from wind and solar photovoltaic sources. To this end, continuous data were collected over a seven-month period, recording the daily power output from both sources. Additionally, the energy requirements of the PtG pilot plant, which relies on the microplant for its electrical supply, were determined. The results indicated that during certain periods, such as specific days in November 2022 and February and March 2023, it was necessary to rely on the conventional electrical grid for backup. Moreover, it was observed that solar photovoltaic energy contributed the most electricity to the system for green hydrogen production. In the study area, although green hydrogen production is predominantly supported by the solar photovoltaic source, it is crucial to have the backup of an additional source, such as wind, due to the intermittent nature of the climatic conditions affecting these technologies.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091903","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a detailed analysis of the energy availability of a 15 kW hybrid wind–solar photovoltaic microplant, designed to supply the electricity demand of the power-to-gas (PtG) pilot plant located at the University of La Guajira, Colombia. The study addresses the lack of specific data on the energy availability curve, which is essential for quantifying the production percentages of green hydrogen from wind and solar photovoltaic sources. To this end, continuous data were collected over a seven-month period, recording the daily power output from both sources. Additionally, the energy requirements of the PtG pilot plant, which relies on the microplant for its electrical supply, were determined. The results indicated that during certain periods, such as specific days in November 2022 and February and March 2023, it was necessary to rely on the conventional electrical grid for backup. Moreover, it was observed that solar photovoltaic energy contributed the most electricity to the system for green hydrogen production. In the study area, although green hydrogen production is predominantly supported by the solar photovoltaic source, it is crucial to have the backup of an additional source, such as wind, due to the intermittent nature of the climatic conditions affecting these technologies.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.