Advanced LSTM Neural Networks for Predicting Directional Changes in Sector-Specific ETFs Using Machine Learning Techniques

Rifa Gowani, Zaryab Kanjiani
{"title":"Advanced LSTM Neural Networks for Predicting Directional Changes in Sector-Specific ETFs Using Machine Learning Techniques","authors":"Rifa Gowani, Zaryab Kanjiani","doi":"arxiv-2409.05778","DOIUrl":null,"url":null,"abstract":"Trading and investing in stocks for some is their full-time career, while for\nothers, it's simply a supplementary income stream. Universal among all\ninvestors is the desire to turn a profit. The key to achieving this goal is\ndiversification. Spreading investments across sectors is critical to\nprofitability and maximizing returns. This study aims to gauge the viability of\nmachine learning methods in practicing the principle of diversification to\nmaximize portfolio returns. To test this, the study evaluates the Long-Short\nTerm Memory (LSTM) model across nine different sectors and over 2,200 stocks\nusing Vanguard's sector-based ETFs. The R-squared value across all sectors\nshowed promising results, with an average of 0.8651 and a high of 0.942 for the\nVNQ ETF. These findings suggest that the LSTM model is a capable and viable\nmodel for accurately predicting directional changes across various industry\nsectors, helping investors diversify and grow their portfolios.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trading and investing in stocks for some is their full-time career, while for others, it's simply a supplementary income stream. Universal among all investors is the desire to turn a profit. The key to achieving this goal is diversification. Spreading investments across sectors is critical to profitability and maximizing returns. This study aims to gauge the viability of machine learning methods in practicing the principle of diversification to maximize portfolio returns. To test this, the study evaluates the Long-Short Term Memory (LSTM) model across nine different sectors and over 2,200 stocks using Vanguard's sector-based ETFs. The R-squared value across all sectors showed promising results, with an average of 0.8651 and a high of 0.942 for the VNQ ETF. These findings suggest that the LSTM model is a capable and viable model for accurately predicting directional changes across various industry sectors, helping investors diversify and grow their portfolios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术预测特定行业 ETF 方向性变化的高级 LSTM 神经网络
对一些人来说,股票交易和投资是他们的全职工作,而对另一些人来说,这只是一种补充收入来源。所有投资者的共同愿望是实现盈利。实现这一目标的关键在于分散投资。跨行业分散投资是盈利能力和收益最大化的关键。本研究旨在衡量机器学习方法在实践多元化原则以实现投资组合回报最大化方面的可行性。为了验证这一点,本研究利用 Vanguard 基于行业的 ETF,在九个不同行业和 2200 多只股票中评估了长短期记忆(LSTM)模型。所有行业的 R 平方值均显示出良好的结果,平均值为 0.8651,VNQ ETF 的最高值为 0.942。这些研究结果表明,LSTM 模型能够准确预测各行业板块的方向性变化,帮助投资者实现投资组合的多样化和增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1