Pareto Set Prediction Assisted Bilevel Multi-objective Optimization

Bing Wang, Hemant K. Singh, Tapabrata Ray
{"title":"Pareto Set Prediction Assisted Bilevel Multi-objective Optimization","authors":"Bing Wang, Hemant K. Singh, Tapabrata Ray","doi":"arxiv-2409.03328","DOIUrl":null,"url":null,"abstract":"Bilevel optimization problems comprise an upper level optimization task that\ncontains a lower level optimization task as a constraint. While there is a\nsignificant and growing literature devoted to solving bilevel problems with\nsingle objective at both levels using evolutionary computation, there is\nrelatively scarce work done to address problems with multiple objectives\n(BLMOP) at both levels. For black-box BLMOPs, the existing evolutionary\ntechniques typically utilize nested search, which in its native form consumes\nlarge number of function evaluations. In this work, we propose to reduce this\nexpense by predicting the lower level Pareto set for a candidate upper level\nsolution directly, instead of conducting an optimization from scratch. Such a\nprediction is significantly challenging for BLMOPs as it involves one-to-many\nmapping scenario. We resolve this bottleneck by supplementing the dataset using\na helper variable and construct a neural network, which can then be trained to\nmap the variables in a meaningful manner. Then, we embed this initialization\nwithin a bilevel optimization framework, termed Pareto set prediction assisted\nevolutionary bilevel multi-objective optimization (PSP-BLEMO). Systematic\nexperiments with existing state-of-the-art methods are presented to demonstrate\nits benefit. The experiments show that the proposed approach is competitive\nacross a range of problems, including both deceptive and non-deceptive problems","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bilevel optimization problems comprise an upper level optimization task that contains a lower level optimization task as a constraint. While there is a significant and growing literature devoted to solving bilevel problems with single objective at both levels using evolutionary computation, there is relatively scarce work done to address problems with multiple objectives (BLMOP) at both levels. For black-box BLMOPs, the existing evolutionary techniques typically utilize nested search, which in its native form consumes large number of function evaluations. In this work, we propose to reduce this expense by predicting the lower level Pareto set for a candidate upper level solution directly, instead of conducting an optimization from scratch. Such a prediction is significantly challenging for BLMOPs as it involves one-to-many mapping scenario. We resolve this bottleneck by supplementing the dataset using a helper variable and construct a neural network, which can then be trained to map the variables in a meaningful manner. Then, we embed this initialization within a bilevel optimization framework, termed Pareto set prediction assisted evolutionary bilevel multi-objective optimization (PSP-BLEMO). Systematic experiments with existing state-of-the-art methods are presented to demonstrate its benefit. The experiments show that the proposed approach is competitive across a range of problems, including both deceptive and non-deceptive problems
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帕累托集合预测辅助双层多目标优化
双层优化问题包括一个上层优化任务,该任务包含一个下层优化任务作为约束条件。虽然利用进化计算解决双层单一目标问题的文献数量可观且在不断增加,但解决双层多目标(BLMOP)问题的文献却相对较少。对于黑盒子 BLMOP,现有的进化技术通常使用嵌套搜索,其原始形式会消耗大量的函数评估。在这项工作中,我们建议直接预测候选上层解决方案的下层帕累托集合,而不是从头开始优化,从而减少这种消耗。这种预测对于 BLMOPs 来说具有很大的挑战性,因为它涉及一对多的映射场景。为了解决这一瓶颈,我们使用辅助变量对数据集进行补充,并构建一个神经网络,然后对其进行训练,使其能够以有意义的方式映射变量。然后,我们将这一初始化嵌入到双层优化框架中,即帕累托集预测辅助进化双层多目标优化(PSP-BLEMO)。为了证明这种方法的优势,我们对现有的最先进方法进行了系统实验。实验表明,所提出的方法在包括欺骗性和非欺骗性问题在内的一系列问题上都具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1