Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study

Arthur Cerveira, Frederico Kremer, Darling de Andrade Lourenço, Ulisses B Corrêa
{"title":"Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study","authors":"Arthur Cerveira, Frederico Kremer, Darling de Andrade Lourenço, Ulisses B Corrêa","doi":"arxiv-2408.10482","DOIUrl":null,"url":null,"abstract":"The widespread application of Artificial Intelligence (AI) techniques has\nsignificantly influenced the development of new therapeutic agents. These\ncomputational methods can be used to design and predict the properties of\ngenerated molecules. Multi-target Drug Discovery (MTDD) is an emerging paradigm\nfor discovering drugs against complex disorders that do not respond well to\nmore traditional target-specific treatments, such as central nervous system,\nimmune system, and cardiovascular diseases. Still, there is yet to be an\nestablished benchmark suite for assessing the effectiveness of AI tools for\ndesigning multi-target compounds. Standardized benchmarks allow for comparing\nexisting techniques and promote rapid research progress. Hence, this work\nproposes an evaluation framework for molecule generation techniques in MTDD\nscenarios, considering brain diseases as a case study. Our methodology involves\nusing large language models to select the appropriate molecular targets,\ngathering and preprocessing the bioassay datasets, training quantitative\nstructure-activity relationship models to predict target modulation, and\nassessing other essential drug-likeness properties for implementing the\nbenchmarks. Additionally, this work will assess the performance of four deep\ngenerative models and evolutionary algorithms over our benchmark suite. In our\nfindings, both evolutionary algorithms and generative models can achieve\ncompetitive results across the proposed benchmarks.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread application of Artificial Intelligence (AI) techniques has significantly influenced the development of new therapeutic agents. These computational methods can be used to design and predict the properties of generated molecules. Multi-target Drug Discovery (MTDD) is an emerging paradigm for discovering drugs against complex disorders that do not respond well to more traditional target-specific treatments, such as central nervous system, immune system, and cardiovascular diseases. Still, there is yet to be an established benchmark suite for assessing the effectiveness of AI tools for designing multi-target compounds. Standardized benchmarks allow for comparing existing techniques and promote rapid research progress. Hence, this work proposes an evaluation framework for molecule generation techniques in MTDD scenarios, considering brain diseases as a case study. Our methodology involves using large language models to select the appropriate molecular targets, gathering and preprocessing the bioassay datasets, training quantitative structure-activity relationship models to predict target modulation, and assessing other essential drug-likeness properties for implementing the benchmarks. Additionally, this work will assess the performance of four deep generative models and evolutionary algorithms over our benchmark suite. In our findings, both evolutionary algorithms and generative models can achieve competitive results across the proposed benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能驱动的多靶点药物分子设计评估框架:以脑部疾病为例
人工智能(AI)技术的广泛应用对新型治疗药物的开发产生了重大影响。这些计算方法可用于设计和预测生成分子的特性。多靶点药物发现(MTDD)是一种新兴的范式,用于发现治疗复杂疾病的药物,这些疾病对传统的特异性靶点治疗效果不佳,如中枢神经系统、免疫系统和心血管疾病。不过,目前还没有一个成熟的基准套件来评估人工智能工具在设计多靶点化合物方面的有效性。标准化的基准可以对现有技术进行比较,促进研究的快速发展。因此,本研究以脑部疾病为案例,为 MTDD 场景中的分子生成技术提出了一个评估框架。我们的方法包括使用大型语言模型来选择合适的分子靶点,收集和预处理生物测定数据集,训练定量结构-活性关系模型来预测靶点调节,以及评估实施基准的其他基本药物相似性。此外,这项工作还将评估四种深度生成模型和进化算法在我们的基准套件中的性能。我们发现,进化算法和生成模型都能在所提出的基准中取得具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1