A More Accurate Approximation of Activation Function with Few Spikes Neurons

Dayena Jeong, Jaewoo Park, Jeonghee Jo, Jongkil Park, Jaewook Kim, Hyun Jae Jang, Suyoun Lee, Seongsik Park
{"title":"A More Accurate Approximation of Activation Function with Few Spikes Neurons","authors":"Dayena Jeong, Jaewoo Park, Jeonghee Jo, Jongkil Park, Jaewook Kim, Hyun Jae Jang, Suyoun Lee, Seongsik Park","doi":"arxiv-2409.00044","DOIUrl":null,"url":null,"abstract":"Recent deep neural networks (DNNs), such as diffusion models [1], have faced\nhigh computational demands. Thus, spiking neural networks (SNNs) have attracted\nlots of attention as energy-efficient neural networks. However, conventional\nspiking neurons, such as leaky integrate-and-fire neurons, cannot accurately\nrepresent complex non-linear activation functions, such as Swish [2]. To\napproximate activation functions with spiking neurons, few spikes (FS) neurons\nwere proposed [3], but the approximation performance was limited due to the\nlack of training methods considering the neurons. Thus, we propose\ntendency-based parameter initialization (TBPI) to enhance the approximation of\nactivation function with FS neurons, exploiting temporal dependencies\ninitializing the training parameters.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent deep neural networks (DNNs), such as diffusion models [1], have faced high computational demands. Thus, spiking neural networks (SNNs) have attracted lots of attention as energy-efficient neural networks. However, conventional spiking neurons, such as leaky integrate-and-fire neurons, cannot accurately represent complex non-linear activation functions, such as Swish [2]. To approximate activation functions with spiking neurons, few spikes (FS) neurons were proposed [3], but the approximation performance was limited due to the lack of training methods considering the neurons. Thus, we propose tendency-based parameter initialization (TBPI) to enhance the approximation of activation function with FS neurons, exploiting temporal dependencies initializing the training parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用少量尖峰神经元更精确地逼近激活函数
最近的深度神经网络(DNN),如扩散模型[1],面临着很高的计算要求。因此,尖峰神经网络(SNN)作为高能效神经网络吸引了大量关注。然而,传统的尖峰神经元(如泄漏整合-发射神经元)无法准确地表示复杂的非线性激活函数,如 Swish[2]。为了用尖峰神经元逼近激活函数,有人提出了少尖峰(FS)神经元 [3],但由于缺乏考虑神经元的训练方法,逼近性能有限。因此,我们提出了基于时序的参数初始化(TBPI),利用训练参数初始化的时序依赖性来提高 FS 神经元激活函数的近似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1