{"title":"Impact of Samarium on Microstructural Evolution and Tribological Behavior of FeCoNiCr High-Entropy Alloys Fabricated by Laser Metal Deposition","authors":"Ke Hu, Xiaoming Guo, Yunfeng She, Lingling Li, Lixia She, Xiaomin Huo, Xiao Liu, Junjie Huang, Ying Zhang, Jinjian Chen","doi":"10.1007/s11665-024-10046-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the microstructural evolution and tribological behavior of an FeCoNiCr alloy containing Sm fabricated by the Laser Metal Deposition technique were investigated. The study employs x-ray diffraction analysis, energy-dispersive spectroscopy, and friction coefficient measurements to comprehensively investigate the impact of Samarium (Sm) addition on the microstructural evolution and frictional behavior of high-entropy alloys (HEAs). Results reveal that the inclusion of 0.4-0.8 wt.% Sm effectively inhibits the formation of coarse phases at the interface between HEAs and 45 steel substrates, enhancing their bonding strength while inducing the precipitation of secondary phases within the HEA matrix. During frictional processes, distinct characteristics in friction coefficients in the friction pair between HEAs against 304 stainless steel beads and SiC beads are observed. Sm-added HEAs demonstrate relatively stable friction coefficients and different friction behaviors with various Sm content, which can be attributed to changes in friction mechanisms caused by formation of oxide particles as lubricant on the contact surface.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"60 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10046-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the microstructural evolution and tribological behavior of an FeCoNiCr alloy containing Sm fabricated by the Laser Metal Deposition technique were investigated. The study employs x-ray diffraction analysis, energy-dispersive spectroscopy, and friction coefficient measurements to comprehensively investigate the impact of Samarium (Sm) addition on the microstructural evolution and frictional behavior of high-entropy alloys (HEAs). Results reveal that the inclusion of 0.4-0.8 wt.% Sm effectively inhibits the formation of coarse phases at the interface between HEAs and 45 steel substrates, enhancing their bonding strength while inducing the precipitation of secondary phases within the HEA matrix. During frictional processes, distinct characteristics in friction coefficients in the friction pair between HEAs against 304 stainless steel beads and SiC beads are observed. Sm-added HEAs demonstrate relatively stable friction coefficients and different friction behaviors with various Sm content, which can be attributed to changes in friction mechanisms caused by formation of oxide particles as lubricant on the contact surface.
本文研究了通过激光金属沉积技术制造的含Sm的FeCoNiCr合金的微观结构演变和摩擦学行为。该研究采用 X 射线衍射分析、能量色散光谱分析和摩擦系数测量方法,全面研究了添加钐(Sm)对高熵合金(HEAs)微观结构演变和摩擦行为的影响。研究结果表明,0.4-0.8 wt.% 的 Sm 能有效抑制 HEA 与 45 钢基体之间界面粗相的形成,增强其结合强度,同时诱导 HEA 基体内次相的析出。在摩擦过程中,观察到 HEA 与 304 不锈钢珠和 SiC 珠之间的摩擦副摩擦系数具有明显的特征。添加了 Sm 的 HEA 表现出相对稳定的摩擦系数,而不同 Sm 含量的 HEA 则表现出不同的摩擦行为,这可能是由于在接触表面形成氧化物颗粒作为润滑剂而导致摩擦机制发生变化。
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered