Assessment of Mechanical and Tribological Properties of SiC- and Multi-walled Carbon Nanotube-Reinforced Surface Composites of AA7075-T6 Fabricated via Friction Stir Processing

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-06 DOI:10.1007/s11665-024-10057-w
Amit Kumar, Vineet Kumar
{"title":"Assessment of Mechanical and Tribological Properties of SiC- and Multi-walled Carbon Nanotube-Reinforced Surface Composites of AA7075-T6 Fabricated via Friction Stir Processing","authors":"Amit Kumar, Vineet Kumar","doi":"10.1007/s11665-024-10057-w","DOIUrl":null,"url":null,"abstract":"<p>Friction stir processing (FSP) is an energy-efficient technique that modifies surfaces and has been used to generate surface metal matrix composites (SMMCs). The AA7075-T6-based two different composites were fabricated in this study by reinforcing multi-walled carbon nanotubes, i.e., SMMC1 and silicon carbide, i.e., SMMC2, through FSP. The matrix material, i.e., AA7075 alloy, is widely used in aerospace and automotive industries due to its good strength/weight ratio. Three-pass FSP with tool speeds of 730 rpm and 65 mm/min was used to develop SMMCs with 7% volume of the reinforcement particles (RPs). Uniform dispersion of the RPs was confirmed through electron probe microanalysis. To investigate the microstructure of the composites and base material, electron backscatter diffraction was employed. To compare the effect of RPs, the SMMCs were examined for mechanical properties, i.e., microhardness, Charpy impact, and tensile strength, and tribological properties. Further, the wear tracks were analyzed for wear mechanism using scanning electron microscopy, and energy-dispersive x-ray analysis revealed the main particles on the tracks. Fractography of the Charpy and tensile specimens provided fracture mechanism. Both the composites outperformed the base metal in terms of mechanical properties and resistance to wear. Regarding the measured attributes, SMMC1 was better than SMMC2 with tensile strength of 629 MPa, impact energy of 25 J, hardness of 160 HV and wear weight loss of 10.2 mg.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10057-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Friction stir processing (FSP) is an energy-efficient technique that modifies surfaces and has been used to generate surface metal matrix composites (SMMCs). The AA7075-T6-based two different composites were fabricated in this study by reinforcing multi-walled carbon nanotubes, i.e., SMMC1 and silicon carbide, i.e., SMMC2, through FSP. The matrix material, i.e., AA7075 alloy, is widely used in aerospace and automotive industries due to its good strength/weight ratio. Three-pass FSP with tool speeds of 730 rpm and 65 mm/min was used to develop SMMCs with 7% volume of the reinforcement particles (RPs). Uniform dispersion of the RPs was confirmed through electron probe microanalysis. To investigate the microstructure of the composites and base material, electron backscatter diffraction was employed. To compare the effect of RPs, the SMMCs were examined for mechanical properties, i.e., microhardness, Charpy impact, and tensile strength, and tribological properties. Further, the wear tracks were analyzed for wear mechanism using scanning electron microscopy, and energy-dispersive x-ray analysis revealed the main particles on the tracks. Fractography of the Charpy and tensile specimens provided fracture mechanism. Both the composites outperformed the base metal in terms of mechanical properties and resistance to wear. Regarding the measured attributes, SMMC1 was better than SMMC2 with tensile strength of 629 MPa, impact energy of 25 J, hardness of 160 HV and wear weight loss of 10.2 mg.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估通过摩擦搅拌工艺制造的碳化硅和多壁碳纳米管增强 AA7075-T6 表面复合材料的机械和摩擦学特性
摩擦搅拌加工(FSP)是一种高效节能的表面改性技术,已被用于制造表面金属基复合材料(SMMC)。本研究通过 FSP 强化多壁碳纳米管(即 SMMC1)和碳化硅(即 SMMC2),制造出基于 AA7075-T6 的两种不同复合材料。基体材料(即 AA7075 合金)因其良好的强度/重量比而被广泛应用于航空航天和汽车行业。在 730 转/分钟和 65 毫米/分钟的工具速度下,采用三通快熔固化法生产出含有 7% 增强粒子(RPs)的 SMMC。电子探针显微分析证实了 RPs 的均匀分散。为了研究复合材料和基体材料的微观结构,采用了电子反向散射衍射法。为了比较 RPs 的效果,对 SMMC 的机械性能(即显微硬度、夏比冲击强度、拉伸强度)和摩擦学性能进行了检测。此外,还使用扫描电子显微镜分析了磨损轨迹的磨损机制,能量色散 X 射线分析显示了轨迹上的主要颗粒。夏比试样和拉伸试样的断裂分析提供了断裂机理。两种复合材料在机械性能和耐磨性方面都优于基体金属。在测量属性方面,SMMC1 优于 SMMC2,其抗拉强度为 629 兆帕、冲击能量为 25 焦耳、硬度为 160 HV、磨损失重为 10.2 毫克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1