$EvoAl^{2048}$

Bernhard J. BergerUniversity of Rostock, Software Engineering Chair Rostock, GermanyHamburg University of Technology, Institute of Embedded Systems, Germany, Christina PlumpDFKI - Cyber-Physical Systems Bremen, Germany, Rolf DrechslerUniversity of Bremen, Departments of Mathematics and Computer ScienceDFKI - Cyber-Physical Systems Bremen, Germany
{"title":"$EvoAl^{2048}$","authors":"Bernhard J. BergerUniversity of Rostock, Software Engineering Chair Rostock, GermanyHamburg University of Technology, Institute of Embedded Systems, Germany, Christina PlumpDFKI - Cyber-Physical Systems Bremen, Germany, Rolf DrechslerUniversity of Bremen, Departments of Mathematics and Computer ScienceDFKI - Cyber-Physical Systems Bremen, Germany","doi":"arxiv-2408.16780","DOIUrl":null,"url":null,"abstract":"As AI solutions enter safety-critical products, the explainability and\ninterpretability of solutions generated by AI products become increasingly\nimportant. In the long term, such explanations are the key to gaining users'\nacceptance of AI-based systems' decisions. We report on applying a\nmodel-driven-based optimisation to search for an interpretable and explainable\npolicy that solves the game 2048. This paper describes a solution to the\nGECCO'24 Interpretable Control Competition using the open-source software\nEvoAl. We aimed to develop an approach for creating interpretable policies that\nare easy to adapt to new ideas.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As AI solutions enter safety-critical products, the explainability and interpretability of solutions generated by AI products become increasingly important. In the long term, such explanations are the key to gaining users' acceptance of AI-based systems' decisions. We report on applying a model-driven-based optimisation to search for an interpretable and explainable policy that solves the game 2048. This paper describes a solution to the GECCO'24 Interpretable Control Competition using the open-source software EvoAl. We aimed to develop an approach for creating interpretable policies that are easy to adapt to new ideas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$EvoAl^{2048}$
随着人工智能解决方案进入安全关键型产品,人工智能产品生成的解决方案的可解释性和可解读性变得越来越重要。从长远来看,这种解释是让用户接受人工智能系统决策的关键。我们报告了如何应用基于模型驱动的优化方法来寻找一种可解释和可解释的政策,以解决 2048 游戏。本文介绍了使用开源软件EvoAl为GECCO'24可解释控制竞赛(GECCO'24 Interpretable Control Competition)提供的解决方案。我们的目标是开发一种方法,用于创建易于适应新想法的可解释策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1