Story Lesher Doyal, Jenny W. Oakley, George Guillen
{"title":"Dwarf Seahorse (Hippocampus zosterae) Density, Distribution, and Habitat Use in Texas","authors":"Story Lesher Doyal, Jenny W. Oakley, George Guillen","doi":"10.1007/s12237-024-01423-x","DOIUrl":null,"url":null,"abstract":"<p>Seagrass beds are composed of foundation species, providing essential nursery grounds, feeding areas, and refuge for various marine life. Several species of fish and invertebrates utilize seagrasses as essential habitat. The Dwarf Seahorse (<i>Hippocampus zosterae</i>) is an understudied species in Texas, and little is known about its density, distribution, and habitat associations in this area of their range. Physicochemical water parameters, nekton community data, habitat data, and Dwarf Seahorse catch data were collected at 80 sites in Texas. The highest catch per unit effort (CPUE) of the target species was in Aransas Bay (0.038/m<sup>2</sup>). There was a positive relationship between the presence and percent cover of turtle grass (<i>Thalassia testudinum</i>) and the presence and CPUE of Dwarf Seahorses. Dwarf Seahorses were detected more often and at a higher CPUE in locations with a higher seagrass community diversity and richness. The nekton community at sites where Dwarf Seahorses were detected was also more abundant, diverse, and species rich. This is the first comprehensive study of the distribution of the Dwarf Seahorse along the Texas coast. Dwarf Seahorses were generally found in higher abundances in association with mature, stable, and diverse seagrass beds. Recommended conservation strategy to protect Dwarf Seahorses should prioritize the protection of established and mature seagrass beds. Continued directed monitoring of this species is recommended to better understand their distribution and population status.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"23 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01423-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seagrass beds are composed of foundation species, providing essential nursery grounds, feeding areas, and refuge for various marine life. Several species of fish and invertebrates utilize seagrasses as essential habitat. The Dwarf Seahorse (Hippocampus zosterae) is an understudied species in Texas, and little is known about its density, distribution, and habitat associations in this area of their range. Physicochemical water parameters, nekton community data, habitat data, and Dwarf Seahorse catch data were collected at 80 sites in Texas. The highest catch per unit effort (CPUE) of the target species was in Aransas Bay (0.038/m2). There was a positive relationship between the presence and percent cover of turtle grass (Thalassia testudinum) and the presence and CPUE of Dwarf Seahorses. Dwarf Seahorses were detected more often and at a higher CPUE in locations with a higher seagrass community diversity and richness. The nekton community at sites where Dwarf Seahorses were detected was also more abundant, diverse, and species rich. This is the first comprehensive study of the distribution of the Dwarf Seahorse along the Texas coast. Dwarf Seahorses were generally found in higher abundances in association with mature, stable, and diverse seagrass beds. Recommended conservation strategy to protect Dwarf Seahorses should prioritize the protection of established and mature seagrass beds. Continued directed monitoring of this species is recommended to better understand their distribution and population status.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.