Characterization of Polymer Aging: A Review

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-08-20 DOI:10.1007/s10118-024-3174-9
Xuan Liu, Rui Yang, Zhi-Ping Xu, Yan Ye, Guo-Shuo Tang, Min Zhao, Qian Zhang, Xiang-Ze Meng
{"title":"Characterization of Polymer Aging: A Review","authors":"Xuan Liu, Rui Yang, Zhi-Ping Xu, Yan Ye, Guo-Shuo Tang, Min Zhao, Qian Zhang, Xiang-Ze Meng","doi":"10.1007/s10118-024-3174-9","DOIUrl":null,"url":null,"abstract":"<p>Polymer aging under environmental conditions causes deterioration of service properties. Understanding the aging behavior and mechanism is important not only for lifetime prediction, but also for material improvement and development. Therefore, comprehensive characterization of polymer materials during aging is crucial. In this review, various analytical methods for characterization of chemical changes, physical changes and service properties are introduced. Based on that, methods for stabilization evaluation and lifetime prediction, especially sensitive evaluation methods are reviewed. Chemical changes include molecular weight changes by chain scission and crosslinking, functional group changes on the surface and in the bulk, formation of free radicals, formation of small molecular species as the degradation products, and chemical distribution by heterogeneous aging and additives migration. Physical changes include crystallization changes (post- or chemi-crystallization) and morphology changes (cracking, debonding, <i>etc</i>.). Service property changes include deterioration of processability, mechanical properties, electrical properties and appearance. In the end, existing problems and future research perspective are proposed, including relationship between chemical/physical changes and service properties, introduction of modern mathematical and computer tools.</p>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10118-024-3174-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer aging under environmental conditions causes deterioration of service properties. Understanding the aging behavior and mechanism is important not only for lifetime prediction, but also for material improvement and development. Therefore, comprehensive characterization of polymer materials during aging is crucial. In this review, various analytical methods for characterization of chemical changes, physical changes and service properties are introduced. Based on that, methods for stabilization evaluation and lifetime prediction, especially sensitive evaluation methods are reviewed. Chemical changes include molecular weight changes by chain scission and crosslinking, functional group changes on the surface and in the bulk, formation of free radicals, formation of small molecular species as the degradation products, and chemical distribution by heterogeneous aging and additives migration. Physical changes include crystallization changes (post- or chemi-crystallization) and morphology changes (cracking, debonding, etc.). Service property changes include deterioration of processability, mechanical properties, electrical properties and appearance. In the end, existing problems and future research perspective are proposed, including relationship between chemical/physical changes and service properties, introduction of modern mathematical and computer tools.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物老化表征:综述
环境条件下的聚合物老化会导致使用性能下降。了解老化行为和机理不仅对寿命预测很重要,而且对材料的改进和开发也很重要。因此,对老化过程中的聚合物材料进行全面表征至关重要。本综述介绍了表征化学变化、物理变化和使用性能的各种分析方法。在此基础上,综述了稳定化评估和寿命预测方法,特别是敏感评估方法。化学变化包括通过链断裂和交联引起的分子量变化、表面和内部的官能团变化、自由基的形成、作为降解产物的小分子物质的形成,以及通过异构老化和添加剂迁移引起的化学分布。物理变化包括结晶变化(后结晶或化学结晶)和形态变化(开裂、脱粘等)。使用性能变化包括加工性能、机械性能、电气性能和外观的恶化。最后,提出了目前存在的问题和未来的研究方向,包括化学/物理变化与使用性能之间的关系、现代数学和计算机工具的引入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Special Issue: Dynamic Polymer Networks Regulation of Mechanical Properties of Conductive Polymer Composites High Performance Microwave Absorption Material Based on Metal-Backboned Polymer Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1