{"title":"Analysis of human errors in the operation of various treatment planning systems over a 10-year period","authors":"Kotaro Iijima, Hiroki Nakayama, Satoshi Nakamura, Takahito Chiba, Yasunori Shuto, Yuka Urago, Shuka Nishina, Hironori Kishida, Yuta Kobayashi, Jun Takatsu, Junichi Kuwahara, Ako Aikawa, Tomonori Goka, Tomoya Kaneda, Naoya Murakami, Hiroshi Igaki, Hiroyuki Okamoto","doi":"10.1093/jrr/rrae053","DOIUrl":null,"url":null,"abstract":"The present study aimed to summarize and report data on errors related to treatment planning, which were collected by medical physicists. The following analyses were performed based on the 10-year error report data: (1) listing of high-risk errors that occurred and (2) the relationship between the number of treatments and error rates, (3) usefulness of the Automated Plan Checking System (APCS) with the Eclipse Scripting Application Programming Interface and (4) the relationship between human factors and error rates. Differences in error rates were observed before and after the use of APCS. APCS reduced the error rate by ~1% for high-risk errors and 3% for low-risk errors. The number of treatments was negatively correlated with error rates. Therefore, we examined the relationship between the workload of medical physicists and error occurrence and revealed that a very large workload may contribute to overlooking errors. Meanwhile, an increase in the number of medical physicists may lead to the detection of more errors. The number of errors was correlated with the number of physicians with less clinical experience; the error rates were higher when there were more physicians with less experience. This is likely due to the lack of training among clinically inexperienced physicians. An environment to provide adequate training is important, as inexperience in clinical practice can easily and directly lead to the occurrence of errors. In any environment, the need for additional plan checkers is an essential factor for eliminating errors.","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to summarize and report data on errors related to treatment planning, which were collected by medical physicists. The following analyses were performed based on the 10-year error report data: (1) listing of high-risk errors that occurred and (2) the relationship between the number of treatments and error rates, (3) usefulness of the Automated Plan Checking System (APCS) with the Eclipse Scripting Application Programming Interface and (4) the relationship between human factors and error rates. Differences in error rates were observed before and after the use of APCS. APCS reduced the error rate by ~1% for high-risk errors and 3% for low-risk errors. The number of treatments was negatively correlated with error rates. Therefore, we examined the relationship between the workload of medical physicists and error occurrence and revealed that a very large workload may contribute to overlooking errors. Meanwhile, an increase in the number of medical physicists may lead to the detection of more errors. The number of errors was correlated with the number of physicians with less clinical experience; the error rates were higher when there were more physicians with less experience. This is likely due to the lack of training among clinically inexperienced physicians. An environment to provide adequate training is important, as inexperience in clinical practice can easily and directly lead to the occurrence of errors. In any environment, the need for additional plan checkers is an essential factor for eliminating errors.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.