Quantum coherence protection by utilizing hybrid noise

IF 1.4 4区 物理与天体物理 Q3 OPTICS Laser Physics Letters Pub Date : 2024-08-30 DOI:10.1088/1612-202x/ad72d8
Jiahui Feng, Tengtao Guo, Yuxuan Zhou, Xinyu Zhao, Yan Xia
{"title":"Quantum coherence protection by utilizing hybrid noise","authors":"Jiahui Feng, Tengtao Guo, Yuxuan Zhou, Xinyu Zhao, Yan Xia","doi":"10.1088/1612-202x/ad72d8","DOIUrl":null,"url":null,"abstract":"Noise is often considered as the biggest enemy of maintaining quantum coherence. However, in this paper, we show a scheme to protect quantum coherence by introducing extra noise. To be specific, we study an atom coupled to a single mode cavity (Jaynes–Cummings model) with two noises. One is from the cavity leakage, the other is from the stochastic atom-cavity coupling. Based on the non-Markovian dynamical equation, we show the quantum coherence can be protected by introducing the noise in the atom-cavity coupling. We study four different types of noises and show their performance on the coherence protection. We also analytically reveal the mechanism of the quantum coherence protection, namely the high frequency noise can freeze the dynamics thus protect coherence. Last but not least, a mixture of different types of noises (hybrid noise) is studied. We show the mixture can lower the performance of the coherence protection scheme and provide an explanation. We hope the results presented here may attract more attention on protecting quantum coherence by utilizing noise.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad72d8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Noise is often considered as the biggest enemy of maintaining quantum coherence. However, in this paper, we show a scheme to protect quantum coherence by introducing extra noise. To be specific, we study an atom coupled to a single mode cavity (Jaynes–Cummings model) with two noises. One is from the cavity leakage, the other is from the stochastic atom-cavity coupling. Based on the non-Markovian dynamical equation, we show the quantum coherence can be protected by introducing the noise in the atom-cavity coupling. We study four different types of noises and show their performance on the coherence protection. We also analytically reveal the mechanism of the quantum coherence protection, namely the high frequency noise can freeze the dynamics thus protect coherence. Last but not least, a mixture of different types of noises (hybrid noise) is studied. We show the mixture can lower the performance of the coherence protection scheme and provide an explanation. We hope the results presented here may attract more attention on protecting quantum coherence by utilizing noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合噪声保护量子相干性
噪声通常被认为是保持量子相干性的最大敌人。然而,在本文中,我们展示了一种通过引入额外噪声来保护量子相干性的方案。具体来说,我们研究了一个与单模腔(杰恩-康明斯模型)耦合的原子,它有两个噪声。一个来自空腔泄漏,另一个来自随机原子-空腔耦合。基于非马尔可夫动力学方程,我们证明在原子-空腔耦合中引入噪声可以保护量子相干性。我们研究了四种不同类型的噪声,并展示了它们在相干性保护方面的性能。我们还通过分析揭示了量子相干性保护的机制,即高频噪声可以冻结动力学从而保护相干性。最后,我们还研究了不同类型噪声的混合物(混合噪声)。我们发现混合噪声会降低相干性保护方案的性能,并给出了解释。我们希望本文介绍的结果能引起人们对利用噪声保护量子相干性的更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Laser Physics Letters
Laser Physics Letters 物理-仪器仪表
CiteScore
3.30
自引率
11.80%
发文量
174
审稿时长
2.4 months
期刊介绍: Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
期刊最新文献
Vectorial manipulation of twisted vector vortex optical fields in strongly nonlocal nonlinear media Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime Picosecond laser with Yb-doped tapered low birefringent double clad fiber Classical driving-assisted quantum evolution speedup A quantum identity authentication protocol based on continuous-variable entangled light fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1