Jiahui Feng, Tengtao Guo, Yuxuan Zhou, Xinyu Zhao, Yan Xia
{"title":"Quantum coherence protection by utilizing hybrid noise","authors":"Jiahui Feng, Tengtao Guo, Yuxuan Zhou, Xinyu Zhao, Yan Xia","doi":"10.1088/1612-202x/ad72d8","DOIUrl":null,"url":null,"abstract":"Noise is often considered as the biggest enemy of maintaining quantum coherence. However, in this paper, we show a scheme to protect quantum coherence by introducing extra noise. To be specific, we study an atom coupled to a single mode cavity (Jaynes–Cummings model) with two noises. One is from the cavity leakage, the other is from the stochastic atom-cavity coupling. Based on the non-Markovian dynamical equation, we show the quantum coherence can be protected by introducing the noise in the atom-cavity coupling. We study four different types of noises and show their performance on the coherence protection. We also analytically reveal the mechanism of the quantum coherence protection, namely the high frequency noise can freeze the dynamics thus protect coherence. Last but not least, a mixture of different types of noises (hybrid noise) is studied. We show the mixture can lower the performance of the coherence protection scheme and provide an explanation. We hope the results presented here may attract more attention on protecting quantum coherence by utilizing noise.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad72d8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Noise is often considered as the biggest enemy of maintaining quantum coherence. However, in this paper, we show a scheme to protect quantum coherence by introducing extra noise. To be specific, we study an atom coupled to a single mode cavity (Jaynes–Cummings model) with two noises. One is from the cavity leakage, the other is from the stochastic atom-cavity coupling. Based on the non-Markovian dynamical equation, we show the quantum coherence can be protected by introducing the noise in the atom-cavity coupling. We study four different types of noises and show their performance on the coherence protection. We also analytically reveal the mechanism of the quantum coherence protection, namely the high frequency noise can freeze the dynamics thus protect coherence. Last but not least, a mixture of different types of noises (hybrid noise) is studied. We show the mixture can lower the performance of the coherence protection scheme and provide an explanation. We hope the results presented here may attract more attention on protecting quantum coherence by utilizing noise.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.