Size Effect on the Ductile Fracture of the Aluminium Alloy 2024-T351

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Experimental Mechanics Pub Date : 2024-09-10 DOI:10.1007/s11340-024-01108-3
F. Šebek, P. Salvet, P. Boháč, R. Adámek, S. Věchet, T. Návrat, J. Zapletal, M. Ganjiani
{"title":"Size Effect on the Ductile Fracture of the Aluminium Alloy 2024-T351","authors":"F. Šebek,&nbsp;P. Salvet,&nbsp;P. Boháč,&nbsp;R. Adámek,&nbsp;S. Věchet,&nbsp;T. Návrat,&nbsp;J. Zapletal,&nbsp;M. Ganjiani","doi":"10.1007/s11340-024-01108-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Reliably calibrated criteria are needed for an accurate prediction of fracture of various components. However, there is not always a sufficient amount of material available. Therefore, miniature testing provides an alternative that is researched together with the following calibration of the ductile fracture criteria and investigating the size effect.</p><h3>Objective</h3><p>The aim is to design miniature testing equipment and specimens for tensile testing, which covers various stress states. This is supplemented by the small punch test, which has the same specimen thickness, taken from the literature to broaden the portfolio for calibration. The second part deals with conducting the finite element analysis, which provided a basis for the calibration of the phenomenological ductile fracture criterion applicable to crack-free bodies to indicate the crack initiation.</p><h3>Methods</h3><p>The steel frame to test thin specimens is designed with optical measurement of deformations. The finite element method is used, within Abaqus and user subroutines, to simulate the tests to obtain the variables needed for the calibration. In addition, the calibration of the criterion using machine learning is explored.</p><h3>Results</h3><p>The feasibility of the proposed experimental program is tested on the aluminium alloy 2024-T351. Moreover, the numerical simulations, which showed a good match with experiments in terms of force responses, adds to the knowledge of modelling in the scope of continuum damage mechanics.</p><h3>Conclusions</h3><p>The presented results provide a material basis for the aluminium alloy studied on a lower scale, while they broaden the testing possibilities and analyses the calibration strategies for the best failure predictability possible.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 9","pages":"1483 - 1495"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01108-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01108-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Reliably calibrated criteria are needed for an accurate prediction of fracture of various components. However, there is not always a sufficient amount of material available. Therefore, miniature testing provides an alternative that is researched together with the following calibration of the ductile fracture criteria and investigating the size effect.

Objective

The aim is to design miniature testing equipment and specimens for tensile testing, which covers various stress states. This is supplemented by the small punch test, which has the same specimen thickness, taken from the literature to broaden the portfolio for calibration. The second part deals with conducting the finite element analysis, which provided a basis for the calibration of the phenomenological ductile fracture criterion applicable to crack-free bodies to indicate the crack initiation.

Methods

The steel frame to test thin specimens is designed with optical measurement of deformations. The finite element method is used, within Abaqus and user subroutines, to simulate the tests to obtain the variables needed for the calibration. In addition, the calibration of the criterion using machine learning is explored.

Results

The feasibility of the proposed experimental program is tested on the aluminium alloy 2024-T351. Moreover, the numerical simulations, which showed a good match with experiments in terms of force responses, adds to the knowledge of modelling in the scope of continuum damage mechanics.

Conclusions

The presented results provide a material basis for the aluminium alloy studied on a lower scale, while they broaden the testing possibilities and analyses the calibration strategies for the best failure predictability possible.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尺寸对铝合金 2024-T351 韧性断裂的影响
背景为了准确预测各种部件的断裂情况,需要有可靠的校准标准。然而,并不总是有足够数量的材料可用。因此,微型试验提供了一种替代方法,我们将在校准韧性断裂标准和研究尺寸效应的同时对其进行研究。目的设计用于拉伸试验的微型试验设备和试样,涵盖各种应力状态。此外,还从文献中提取了具有相同试样厚度的小型冲压试验作为补充,以扩大校准组合。第二部分是进行有限元分析,为校准适用于无裂纹体的现象学韧性断裂准则提供依据,以指示裂纹的起始。在 Abaqus 和用户子程序中使用有限元法模拟试验,以获得校准所需的变量。此外,还探讨了使用机器学习对标准进行校准的问题。结果在铝合金 2024-T351 上测试了拟议实验程序的可行性。此外,数值模拟在力响应方面与实验显示出良好的匹配性,为连续损伤力学范围内的建模知识提供了补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
期刊最新文献
A Note of Gratitude from the Editor-in-Chief On the Cover: Accounting for Localized Deformation: A Simple Computation of True Stress in Micropillar Compression Experiments Dynamic Magneto-Mechanical Analysis of Isotropic and Anisotropic Magneto-Active Elastomers Measurement of the Tension Loss in a Cable Traveling Over a Pulley, for Low-Speed Applications Biomechanical Hand Model: Modeling and Simulating the Lateral Pinch Movement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1