DOME Registry: Implementing community-wide recommendations for reporting supervised machine learning in biology

Omar Abdelghani AttafiDepartment of Biomedical Sciences University of Padova Italy, Damiano ClementelDepartment of Biomedical Sciences University of Padova Italy, Konstantinos KyritsisInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece, Emidio CapriottiDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Gavin FarrellELIXIR Hub Hinxton Cambridge UK, Styliani-Christina FragkouliInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki GreeceDepartment of Biology National and Kapodistrian University of Athens Athens Greece, Leyla Jael CastroZB Med Information Centre for Life Sciences Cologne Germany, András HatosDepartment of Oncology Geneva University Hospitals Geneva SwitzerlandDepartment of Computational Biology University of Lausanne Lausanne SwitzerlandSwiss Institute of Bioinformatics Lausanne SwitzerlandSwiss Cancer Center Léman Lausanne Switzerland, Tom LenaertsInteruniversity Institute of Bioinformatics in Brussels Université Libre de Bruxelles Vrije Universiteit Brussel Brussels BelgiumMachine Learning Group Université Libre de Bruxelles Street BelgiumArtificial Intelligence Laboratory Vrije Universiteit Brussels Brussels Belgium, Stanislav MazurenkoLoschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk University Brno Czech Republic International Clinical Research Centre St Anne's Hospital Brno Czech Republic, Soroush MozaffariDepartment of Biomedical Sciences University of Padova Italy, Franco PradelliDepartment of Biomedical Sciences University of Padova Italy, Patrick RuchHES-SO - HEG Geneva Geneva SwitzerlandSIB Swiss Institute of Bioinformatics Geneva Switzerland, Castrense SavojardoDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Paola TurinaDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Federico ZambelliDept of Biosciences University of Milan ItalyInstitute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari Italy, Damiano PiovesanDepartment of Biomedical Sciences University of Padova Italy, Alexander Miguel MonzonDepartment of Information Engineering University of Padova Italy, Fotis PsomopoulosInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece, Silvio C. E. TosattoDepartment of Biomedical Sciences University of Padova ItalyInstitute of Biomembranes Bioenergetics and Molecular Biotechnologies National Research Council Bari Italy
{"title":"DOME Registry: Implementing community-wide recommendations for reporting supervised machine learning in biology","authors":"Omar Abdelghani AttafiDepartment of Biomedical Sciences University of Padova Italy, Damiano ClementelDepartment of Biomedical Sciences University of Padova Italy, Konstantinos KyritsisInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece, Emidio CapriottiDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Gavin FarrellELIXIR Hub Hinxton Cambridge UK, Styliani-Christina FragkouliInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki GreeceDepartment of Biology National and Kapodistrian University of Athens Athens Greece, Leyla Jael CastroZB Med Information Centre for Life Sciences Cologne Germany, András HatosDepartment of Oncology Geneva University Hospitals Geneva SwitzerlandDepartment of Computational Biology University of Lausanne Lausanne SwitzerlandSwiss Institute of Bioinformatics Lausanne SwitzerlandSwiss Cancer Center Léman Lausanne Switzerland, Tom LenaertsInteruniversity Institute of Bioinformatics in Brussels Université Libre de Bruxelles Vrije Universiteit Brussel Brussels BelgiumMachine Learning Group Université Libre de Bruxelles Street BelgiumArtificial Intelligence Laboratory Vrije Universiteit Brussels Brussels Belgium, Stanislav MazurenkoLoschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of ScienceMasaryk University Brno Czech Republic International Clinical Research Centre St Anne's Hospital Brno Czech Republic, Soroush MozaffariDepartment of Biomedical Sciences University of Padova Italy, Franco PradelliDepartment of Biomedical Sciences University of Padova Italy, Patrick RuchHES-SO - HEG Geneva Geneva SwitzerlandSIB Swiss Institute of Bioinformatics Geneva Switzerland, Castrense SavojardoDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Paola TurinaDepartment of Pharmacy and Biotechnology University of Bologna Bologna Italy, Federico ZambelliDept of Biosciences University of Milan ItalyInstitute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari Italy, Damiano PiovesanDepartment of Biomedical Sciences University of Padova Italy, Alexander Miguel MonzonDepartment of Information Engineering University of Padova Italy, Fotis PsomopoulosInstitute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece, Silvio C. E. TosattoDepartment of Biomedical Sciences University of Padova ItalyInstitute of Biomembranes Bioenergetics and Molecular Biotechnologies National Research Council Bari Italy","doi":"arxiv-2408.07721","DOIUrl":null,"url":null,"abstract":"Supervised machine learning (ML) is used extensively in biology and deserves\ncloser scrutiny. The DOME recommendations aim to enhance the validation and\nreproducibility of ML research by establishing standards for key aspects such\nas data handling and processing, optimization, evaluation, and model\ninterpretability. The recommendations help to ensure that key details are\nreported transparently by providing a structured set of questions. Here, we\nintroduce the DOME Registry (URL: registry.dome-ml.org), a database that allows\nscientists to manage and access comprehensive DOME-related information on\npublished ML studies. The registry uses external resources like ORCID, APICURON\nand the Data Stewardship Wizard to streamline the annotation process and ensure\ncomprehensive documentation. By assigning unique identifiers and DOME scores to\npublications, the registry fosters a standardized evaluation of ML methods.\nFuture plans include continuing to grow the registry through community\ncuration, improving the DOME score definition and encouraging publishers to\nadopt DOME standards, promoting transparency and reproducibility of ML in the\nlife sciences.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The DOME recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME Registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, promoting transparency and reproducibility of ML in the life sciences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DOME 注册中心:在全社会范围内实施关于报告生物学中监督机器学习的建议
有监督的机器学习(ML)被广泛应用于生物学领域,值得更严格的审查。DOME 建议旨在通过建立数据处理和加工、优化、评估和模型可解释性等关键方面的标准,加强 ML 研究的验证和可重复性。这些建议通过提供一系列结构化问题,有助于确保关键细节的透明报告。在此,我们介绍 DOME 注册中心(URL:registry.dome-ml.org),这是一个允许科学家管理和访问已发表的 ML 研究的 DOME 相关综合信息的数据库。该注册中心使用 ORCID、APICURON 和数据管理向导等外部资源来简化注释过程并确保文档的全面性。未来的计划包括通过社区化继续发展该注册机构,改进 DOME 分数定义,鼓励出版商采用 DOME 标准,提高生命科学领域 ML 的透明度和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities and challenges of mRNA technologies in development of Dengue Virus Vaccine Compatibility studies of loquat scions with loquat and quince rootstocks Analysis of Potential Biases and Validity of Studies Using Multiverse Approaches to Assess the Impacts of Government Responses to Epidemics Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review Unveiling Parkinson's Disease-like Changes Triggered by Spaceflight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1