{"title":"Efficient and Accurate Optimal Design Method for Radiation Shielding","authors":"Yu Han;Tao Ying;He Zhu;Jianqun Yang;Xingji Li","doi":"10.1109/TNS.2024.3449891","DOIUrl":null,"url":null,"abstract":"To ensure the longevity and reliability of spacecraft during on-orbit missions, it is essential to protect components that do not satisfy the requirement of the radiation resistance with radiation shielding. With the advancement of commercial spaceflight, modern aerospace industries demand low cost and high efficiency for spacecraft designs. Traditional methods of radiation shielding enhancement are no longer adequate to meet these requirements. The optimization method for radiation shielding enhancement designed in this article organically combines the advantages of the ray-tracing (RT) method and the reverse Monte-Carlo (RMC) method, thereby avoiding the shortcomings of using either method alone. Simulation results demonstrate that this method not only ensures the accuracy of total ionizing dose (TID) simulation results for sensitive components but also enhances the efficiency of radiation shielding enhancement design, saving time in the design process. The accurate patching results designed by this method optimize the patching quality compared with traditional shielding design method, significantly reducing radiation shielding mass and conserving valuable payload resources.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"71 11","pages":"2475-2483"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648824/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the longevity and reliability of spacecraft during on-orbit missions, it is essential to protect components that do not satisfy the requirement of the radiation resistance with radiation shielding. With the advancement of commercial spaceflight, modern aerospace industries demand low cost and high efficiency for spacecraft designs. Traditional methods of radiation shielding enhancement are no longer adequate to meet these requirements. The optimization method for radiation shielding enhancement designed in this article organically combines the advantages of the ray-tracing (RT) method and the reverse Monte-Carlo (RMC) method, thereby avoiding the shortcomings of using either method alone. Simulation results demonstrate that this method not only ensures the accuracy of total ionizing dose (TID) simulation results for sensitive components but also enhances the efficiency of radiation shielding enhancement design, saving time in the design process. The accurate patching results designed by this method optimize the patching quality compared with traditional shielding design method, significantly reducing radiation shielding mass and conserving valuable payload resources.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.