Pulse Shape Discrimination Based on the Tempotron: A Powerful Classifier on GPU

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nuclear Science Pub Date : 2024-08-16 DOI:10.1109/TNS.2024.3444888
Haoran Liu;Peng Li;Mingzhe Liu;Kaimin Wang;Zhuo Zuo;Bingqi Liu
{"title":"Pulse Shape Discrimination Based on the Tempotron: A Powerful Classifier on GPU","authors":"Haoran Liu;Peng Li;Mingzhe Liu;Kaimin Wang;Zhuo Zuo;Bingqi Liu","doi":"10.1109/TNS.2024.3444888","DOIUrl":null,"url":null,"abstract":"This study utilized the Tempotron, a robust classifier based on a third-generation neural network model, for pulse shape discrimination (PSD). By eliminating the need for manual feature extraction, the Tempotron model can process pulse signals directly, generating discrimination results based on prior knowledge. The study performed experiments using graphics processing unit (GPU) acceleration, resulting in being over 500 times faster compared to the CPU-based model, and investigated the impact of noise augmentation on the Tempotron performance. Experimental results substantiated that Tempotron serves as a formidable classifier, adept at accomplishing high discrimination accuracy on both AmBe and time-of-flight (ToF) PuBe datasets. Furthermore, analyzing the neural activity of Tempotron during training shed light on its learning characteristics and aided in selecting its hyperparameters. Moreover, the study addressed the constraints and potential avenues for future development in utilizing the Tempotron for PSD. The dataset used in this study and the GPU-based Tempotron are publicly available on GitHub at \n<uri>https://github.com/HaoranLiu507/TempotronGPU</uri>\n.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"71 10","pages":"2297-2308"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10638101/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilized the Tempotron, a robust classifier based on a third-generation neural network model, for pulse shape discrimination (PSD). By eliminating the need for manual feature extraction, the Tempotron model can process pulse signals directly, generating discrimination results based on prior knowledge. The study performed experiments using graphics processing unit (GPU) acceleration, resulting in being over 500 times faster compared to the CPU-based model, and investigated the impact of noise augmentation on the Tempotron performance. Experimental results substantiated that Tempotron serves as a formidable classifier, adept at accomplishing high discrimination accuracy on both AmBe and time-of-flight (ToF) PuBe datasets. Furthermore, analyzing the neural activity of Tempotron during training shed light on its learning characteristics and aided in selecting its hyperparameters. Moreover, the study addressed the constraints and potential avenues for future development in utilizing the Tempotron for PSD. The dataset used in this study and the GPU-based Tempotron are publicly available on GitHub at https://github.com/HaoranLiu507/TempotronGPU .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Tempotron 的脉冲形状判别:GPU 上的强大分类器
本研究利用基于第三代神经网络模型的稳健分类器 Tempotron 进行脉冲形状辨别(PSD)。Tempotron 模型无需人工特征提取,可直接处理脉冲信号,并根据先验知识生成判别结果。研究使用图形处理器(GPU)加速进行了实验,结果比基于 CPU 的模型快 500 多倍,并研究了噪声增强对 Tempotron 性能的影响。实验结果证明,Tempotron 是一种强大的分类器,能够在 AmBe 和飞行时间(ToF)PuBe 数据集上实现很高的识别准确率。此外,通过分析 Tempotron 在训练过程中的神经活动,可以了解其学习特点,并有助于选择其超参数。此外,该研究还探讨了利用 Tempotron 进行 PSD 的限制因素和未来发展的潜在途径。本研究中使用的数据集和基于 GPU 的 Tempotron 在 GitHub 上公开,网址为 https://github.com/HaoranLiu507/TempotronGPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Nuclear Science publication information IEEE Transactions on Nuclear Science information for authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1