Survey of Recent Results in Privacy-Preserving Mechanisms for Multi-Agent Systems

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-09-05 DOI:10.1007/s10846-024-02161-9
Magdalena Kossek, Margareta Stefanovic
{"title":"Survey of Recent Results in Privacy-Preserving Mechanisms for Multi-Agent Systems","authors":"Magdalena Kossek, Margareta Stefanovic","doi":"10.1007/s10846-024-02161-9","DOIUrl":null,"url":null,"abstract":"<p>Privacy-preserving communication in cooperative control is essential for effective operations of various systems where sensitive information needs to be protected. This includes systems such as smart grids, traffic management systems, autonomous vehicle networks, healthcare systems, financial networks, and social networks. Recent privacy-preserving cooperative control literature is categorized and discussed in this paper. Advantages and disadvantages of differential privacy and encryption-based privacy-preserving protocols are described. The objective of this work is to examine and analyze existing research and knowledge related to the preservation of privacy in the context of cooperative control. This paper aims to identify and present a range of approaches, techniques, and methodologies that have been proposed or employed to address privacy concerns in multi-agent systems. It seeks to explore the current challenges, limitations, and gaps in the existing literature. It also aims to consolidate the findings from various studies to provide an overview of privacy-preserving cooperative control in multi-agent systems. The goal is to assist in the development of novel privacy-preserving mechanisms for cooperative control.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02161-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy-preserving communication in cooperative control is essential for effective operations of various systems where sensitive information needs to be protected. This includes systems such as smart grids, traffic management systems, autonomous vehicle networks, healthcare systems, financial networks, and social networks. Recent privacy-preserving cooperative control literature is categorized and discussed in this paper. Advantages and disadvantages of differential privacy and encryption-based privacy-preserving protocols are described. The objective of this work is to examine and analyze existing research and knowledge related to the preservation of privacy in the context of cooperative control. This paper aims to identify and present a range of approaches, techniques, and methodologies that have been proposed or employed to address privacy concerns in multi-agent systems. It seeks to explore the current challenges, limitations, and gaps in the existing literature. It also aims to consolidate the findings from various studies to provide an overview of privacy-preserving cooperative control in multi-agent systems. The goal is to assist in the development of novel privacy-preserving mechanisms for cooperative control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多代理系统隐私保护机制最新成果概览
协同控制中的隐私保护通信对于需要保护敏感信息的各种系统的有效运行至关重要。这包括智能电网、交通管理系统、自动驾驶汽车网络、医疗保健系统、金融网络和社交网络等系统。本文对近期的隐私保护合作控制文献进行了分类和讨论。介绍了差分隐私和基于加密的隐私保护协议的优缺点。这项工作的目的是研究和分析与合作控制中的隐私保护相关的现有研究和知识。本文旨在确定并介绍一系列为解决多代理系统中的隐私问题而提出或采用的方式、技术和方法。本文旨在探讨现有文献中存在的挑战、局限和差距。它还旨在整合各种研究成果,为多代理系统中的隐私保护合作控制提供一个概览。其目的是协助开发新型隐私保护合作控制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1