Iris David Du Mutel de Pierrepont Franzetti, Riccardo Parin, Elisa Capello, Matthew J. Rutherford, Kimon P. Valavanis
{"title":"Ground, Ceiling and Wall Effect Evaluation of Small Quadcopters in Pressure-controlled Environments","authors":"Iris David Du Mutel de Pierrepont Franzetti, Riccardo Parin, Elisa Capello, Matthew J. Rutherford, Kimon P. Valavanis","doi":"10.1007/s10846-024-02155-7","DOIUrl":null,"url":null,"abstract":"<p>Multicopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the open spaces in obstacle-free environments commonly flown by fixed-wing unmanned aerial vehicles, multicopters frequently fly close to surfaces and must take into account the airflow variations caused by airflow rebound. Such disturbances must be identified in order to design algorithms capable of compensating them. The evaluation of ground, ceiling and wall effects using two different test stands is proposed in this work. Different propellers and sensors have been considered for testing. The first test setup used was placed inside terraXcube’s large climatic chamber allowing a precise control of temperature and pressure of around 20°C and 1000 hPa, respectively. The second test setup is located at the University of Denver (DU) Unmanned Systems Research Institute (DU<span>\\(^2\\)</span>SRI) laboratory with a stable pressure of around 800 hPa. Two different fixed 6 degrees of freedom force-torque sensors have been used for the experiments, allowing to sample forces and moments in three orthogonal axes. The tests simulate a hovering situation of a quadcopter at different distances to either the ground, the ceiling or a wall. The influence of the propeller size, rotation speed, pressure and temperature have also been considered and used for later dimensionless coefficient comparison. A thorough analysis of the measurement uncertainty is also included based on experimental evaluations and manufacturer information. Experimental data collected in these tests can be used for the definition of a mathematical model in which the effect of the proximity to the different surfaces is evaluated.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"68 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02155-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multicopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the open spaces in obstacle-free environments commonly flown by fixed-wing unmanned aerial vehicles, multicopters frequently fly close to surfaces and must take into account the airflow variations caused by airflow rebound. Such disturbances must be identified in order to design algorithms capable of compensating them. The evaluation of ground, ceiling and wall effects using two different test stands is proposed in this work. Different propellers and sensors have been considered for testing. The first test setup used was placed inside terraXcube’s large climatic chamber allowing a precise control of temperature and pressure of around 20°C and 1000 hPa, respectively. The second test setup is located at the University of Denver (DU) Unmanned Systems Research Institute (DU\(^2\)SRI) laboratory with a stable pressure of around 800 hPa. Two different fixed 6 degrees of freedom force-torque sensors have been used for the experiments, allowing to sample forces and moments in three orthogonal axes. The tests simulate a hovering situation of a quadcopter at different distances to either the ground, the ceiling or a wall. The influence of the propeller size, rotation speed, pressure and temperature have also been considered and used for later dimensionless coefficient comparison. A thorough analysis of the measurement uncertainty is also included based on experimental evaluations and manufacturer information. Experimental data collected in these tests can be used for the definition of a mathematical model in which the effect of the proximity to the different surfaces is evaluated.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).