PHUI-GA: GPU-Based Efficiency Evolutionary Algorithm for Mining High Utility Itemsets

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-04-23 DOI:10.23919/jsee.2024.000020
Haipeng Jiang, Guoqing Wu, Mengdan Sun, Feng Li, Yunfei Sun, Wei Fang
{"title":"PHUI-GA: GPU-Based Efficiency Evolutionary Algorithm for Mining High Utility Itemsets","authors":"Haipeng Jiang, Guoqing Wu, Mengdan Sun, Feng Li, Yunfei Sun, Wei Fang","doi":"10.23919/jsee.2024.000020","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms (EAs) have been used in high utility itemset mining (HUIM) to address the problem of discovering high utility itemsets (HUIs) in the exponential search space. EAs have good running and mining performance, but they still require huge computational resource and may miss many HUIs. Due to the good combination of EA and graphics processing unit (GPU), we propose a parallel genetic algorithm (GA) based on the platform of GPU for mining HUIM (PHUI-GA). The evolution steps with improvements are performed in central processing unit (CPU) and the CPU intensive steps are sent to GPU to evaluate with multi-threaded processors. Experiments show that the mining performance of PHUI-GA outperforms the existing EAs. When mining 90% HUIs, the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary algorithms (EAs) have been used in high utility itemset mining (HUIM) to address the problem of discovering high utility itemsets (HUIs) in the exponential search space. EAs have good running and mining performance, but they still require huge computational resource and may miss many HUIs. Due to the good combination of EA and graphics processing unit (GPU), we propose a parallel genetic algorithm (GA) based on the platform of GPU for mining HUIM (PHUI-GA). The evolution steps with improvements are performed in central processing unit (CPU) and the CPU intensive steps are sent to GPU to evaluate with multi-threaded processors. Experiments show that the mining performance of PHUI-GA outperforms the existing EAs. When mining 90% HUIs, the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHUI-GA:基于 GPU 的效率进化算法,用于挖掘高实用项集
进化算法(EA)已被用于高效用项集挖掘(HUIM),以解决在指数搜索空间中发现高效用项集(HUI)的问题。EA 具有良好的运行和挖掘性能,但仍需要巨大的计算资源,而且可能会遗漏许多 HUI。由于 EA 与图形处理器(GPU)的良好结合,我们提出了一种基于 GPU 平台的并行遗传算法(GA),用于挖掘 HUIM(PHUI-GA)。改进的进化步骤在中央处理器(CPU)中执行,CPU 密集型步骤则发送到 GPU,由多线程处理器进行评估。实验表明,PHUI-GA 的挖掘性能优于现有的 EA。在挖掘 90% 的 HUI 时,PHUI-GA 比现有的 EA 高出 188 倍,比 CPU 并行方法高出 36 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1