Analysis of Global and Key PM2.5 Dynamic Mode Decomposition Based on the Koopman Method

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-08 DOI:10.3390/atmos15091091
Yuhan Yu, Dantong Liu, Bin Wang, Feng Zhang
{"title":"Analysis of Global and Key PM2.5 Dynamic Mode Decomposition Based on the Koopman Method","authors":"Yuhan Yu, Dantong Liu, Bin Wang, Feng Zhang","doi":"10.3390/atmos15091091","DOIUrl":null,"url":null,"abstract":"Understanding the spatiotemporal dynamics of atmospheric PM2.5 concentration is highly challenging due to its evolution processes have complex and nonlinear patterns. Traditional mode decomposition methods struggle to accurately capture the mode features of PM2.5 concentrations. In this study, we utilized the global linearization capabilities of the Koopman method to analyze the hourly and daily spatiotemporal processes of PM2.5 concentration in the Beijing–Tianjin–Hebei (BTH) region from 2019 to 2021. This approach decomposes the data into the superposition of different spatial modes, revealing their hierarchical spatiotemporal structure and reconstructing the dynamic processes. The results show that PM2.5 concentrations exhibit high-frequency cycles of 12 and 24 h, as well as low-frequency cycles of 124 and 353 days, while also revealing spatiotemporal modes of growth, recession, and oscillation. The superposition of these modes enables the reconstruction of spatiotemporal dynamics with a mean absolute percentage error (MAPE) of only 0.6%. Unlike empirical mode decomposition (EMD), Koopman mode decomposition (KMD) method avoids mode aliasing and provides a clearer identification of global and key modes compared to wavelet analysis. These findings underscore the effectiveness of KMD method in analyzing and reconstructing the spatiotemporal dynamics of PM2.5 concentration, offering new insights into the understanding and reconstruction of other complex spatiotemporal phenomena.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091091","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the spatiotemporal dynamics of atmospheric PM2.5 concentration is highly challenging due to its evolution processes have complex and nonlinear patterns. Traditional mode decomposition methods struggle to accurately capture the mode features of PM2.5 concentrations. In this study, we utilized the global linearization capabilities of the Koopman method to analyze the hourly and daily spatiotemporal processes of PM2.5 concentration in the Beijing–Tianjin–Hebei (BTH) region from 2019 to 2021. This approach decomposes the data into the superposition of different spatial modes, revealing their hierarchical spatiotemporal structure and reconstructing the dynamic processes. The results show that PM2.5 concentrations exhibit high-frequency cycles of 12 and 24 h, as well as low-frequency cycles of 124 and 353 days, while also revealing spatiotemporal modes of growth, recession, and oscillation. The superposition of these modes enables the reconstruction of spatiotemporal dynamics with a mean absolute percentage error (MAPE) of only 0.6%. Unlike empirical mode decomposition (EMD), Koopman mode decomposition (KMD) method avoids mode aliasing and provides a clearer identification of global and key modes compared to wavelet analysis. These findings underscore the effectiveness of KMD method in analyzing and reconstructing the spatiotemporal dynamics of PM2.5 concentration, offering new insights into the understanding and reconstruction of other complex spatiotemporal phenomena.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于库普曼方法的全球和关键 PM2.5 动态模式分解分析
由于大气 PM2.5 浓度的演变过程具有复杂的非线性模式,因此了解其时空动态具有很大的挑战性。传统的模式分解方法难以准确捕捉 PM2.5 浓度的模式特征。在本研究中,我们利用 Koopman 方法的全局线性化能力,分析了京津冀(BTH)地区 2019 年至 2021 年 PM2.5 浓度的小时和日时空过程。该方法将数据分解为不同空间模式的叠加,揭示其层次性时空结构,重构动态过程。结果表明,PM2.5 浓度呈现出 12 小时和 24 小时的高频周期,以及 124 天和 353 天的低频周期,同时还揭示了增长、衰退和振荡的时空模式。这些模式的叠加使得重建时空动态的平均绝对百分比误差(MAPE)仅为 0.6%。与经验模式分解法(EMD)不同,库普曼模式分解法(KMD)避免了模式混叠,与小波分析法相比,能更清晰地识别全局模式和关键模式。这些发现强调了 KMD 方法在分析和重建 PM2.5 浓度时空动态方面的有效性,为理解和重建其他复杂时空现象提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1