{"title":"Research on Short-Term Forecasting Model of Global Atmospheric Temperature and Wind in the near Space Based on Deep Learning","authors":"Xingxin Sun, Chen Zhou, Jian Feng, Huiyun Yang, Yuqiang Zhang, Zhou Chen, Tong Xu, Zhongxin Deng, Zhengyu Zhao, Yi Liu, Ting Lan","doi":"10.3390/atmos15091069","DOIUrl":null,"url":null,"abstract":"Developing short-term forecasting models for global atmospheric temperature and wind in near space is crucial for understanding atmospheric dynamics and supporting human activities in this region. While numerical models have been extensively developed, deep learning techniques have recently shown promise in improving atmospheric forecasting accuracy. In this study, convolutional long short-term memory (ConvLSTM) and convolutional gated recurrent unit (ConvGRU) neural networks were applied to build for short-term global-scale forecasting model of atmospheric temperature and wind in near space based on the MERRA-2 reanalysis dataset from 2010–2022. The model results showed that the ConvGRU model outperforms the ConvLSTM model in the short-term forecast results. The ConvGRU model achieved a root mean square error in the first three hours of approximately 1.8 K for temperature predictions, and errors of 4.2 m/s and 3.8 m/s for eastward and northward wind predictions on all 72 isobaric surfaces. Specifically, at a higher altitude (on the 1.65 Pa isobaric surface, approximately 70 km above sea level), the ConvGRU model achieved a RMSE of about 2.85 K for temperature predictions, and 5.67 m/s and 5.17 m/s for eastward and northward wind. This finding is significantly meaningful for short-term temperature and wind forecasts in near space and for exploring the physical mechanisms related to temperature and wind variations in this region.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091069","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing short-term forecasting models for global atmospheric temperature and wind in near space is crucial for understanding atmospheric dynamics and supporting human activities in this region. While numerical models have been extensively developed, deep learning techniques have recently shown promise in improving atmospheric forecasting accuracy. In this study, convolutional long short-term memory (ConvLSTM) and convolutional gated recurrent unit (ConvGRU) neural networks were applied to build for short-term global-scale forecasting model of atmospheric temperature and wind in near space based on the MERRA-2 reanalysis dataset from 2010–2022. The model results showed that the ConvGRU model outperforms the ConvLSTM model in the short-term forecast results. The ConvGRU model achieved a root mean square error in the first three hours of approximately 1.8 K for temperature predictions, and errors of 4.2 m/s and 3.8 m/s for eastward and northward wind predictions on all 72 isobaric surfaces. Specifically, at a higher altitude (on the 1.65 Pa isobaric surface, approximately 70 km above sea level), the ConvGRU model achieved a RMSE of about 2.85 K for temperature predictions, and 5.67 m/s and 5.17 m/s for eastward and northward wind. This finding is significantly meaningful for short-term temperature and wind forecasts in near space and for exploring the physical mechanisms related to temperature and wind variations in this region.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.