Rockburst Hazard and Energy Release in Coal in Case of Thermal-Mechanical Coupling

IF 0.7 4区 工程技术 Q4 MINING & MINERAL PROCESSING Journal of Mining Science Pub Date : 2024-09-01 DOI:10.1134/s1062739124020108
Dewei Fan, Aiwen Wang, Yishan Pan, Linghai Kong, Shankun Zhao, Kun Lv
{"title":"Rockburst Hazard and Energy Release in Coal in Case of Thermal-Mechanical Coupling","authors":"Dewei Fan, Aiwen Wang, Yishan Pan, Linghai Kong, Shankun Zhao, Kun Lv","doi":"10.1134/s1062739124020108","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The spontaneous high-temperature conditions in deep mining cause significant changes in one of the factors that determine the risk of rock burst in coal mine roadways. Therefore, based on the test method of the bursting proneness of coal, uniaxial loading tests were conducted on coal specimens under different thermal loads to explore the variations in the bursting proneness and energy release of heated coal, analyze the variations and mechanism controlling the coal skeleton, physicochemical properties, quality, fracture mode evolution, and macrocrack quantity with different loading rates, and calculate and discuss the changes in the critical conditions of a coal–rock system during heating. In summary, the study of the change in bursting energy release caused by the heating of coal can lay the foundation for the engineering-based prevention and control of composite dynamic disasters in deep coal mines.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739124020108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

The spontaneous high-temperature conditions in deep mining cause significant changes in one of the factors that determine the risk of rock burst in coal mine roadways. Therefore, based on the test method of the bursting proneness of coal, uniaxial loading tests were conducted on coal specimens under different thermal loads to explore the variations in the bursting proneness and energy release of heated coal, analyze the variations and mechanism controlling the coal skeleton, physicochemical properties, quality, fracture mode evolution, and macrocrack quantity with different loading rates, and calculate and discuss the changes in the critical conditions of a coal–rock system during heating. In summary, the study of the change in bursting energy release caused by the heating of coal can lay the foundation for the engineering-based prevention and control of composite dynamic disasters in deep coal mines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热机械耦合情况下的岩爆危险和煤炭中的能量释放
摘要 深部开采的自发高温条件导致煤矿巷道岩石爆裂风险的决定因素之一发生了显著变化。因此,基于煤炭易爆性试验方法,对不同热载荷下的煤炭试样进行了单轴加载试验,探讨了加热煤炭易爆性和能量释放的变化,分析了不同加载速率下煤炭骨架、理化性质、质量、断裂模式演化和大裂缝数量的变化及控制机理,并计算和讨论了加热过程中煤岩体系临界条件的变化。总之,研究煤炭加热引起的爆破能量释放变化,可为深部煤矿复合动力灾害的工程化防治奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining Science
Journal of Mining Science 工程技术-矿业与矿物加工
CiteScore
1.70
自引率
25.00%
发文量
19
审稿时长
24 months
期刊介绍: The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.
期刊最新文献
Topicality of the Framework and General Theory for Safe Deep-Level Mining of Hydrocarbon-Bearing Formations Study on Loading Rate and Rock–Coal Strength Ratio Effect on Mechanical Properties of Coal–Rock Combination Interrelation of Mechanical Properties and Root Damage of Salix with Ground Surface Subsidence Experimental Investigation of Block Fracture Influence on P-Wave Propagation in Block Rock Mass Evolution Mechanism and Monitoring Technology of Overburden Deformation in Underground Mining with Grout Injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1