In-Situ Stress Prediction Model for Tight Sandstone Based on XGBoost Algorithm

IF 0.7 4区 工程技术 Q4 MINING & MINERAL PROCESSING Journal of Mining Science Pub Date : 2024-09-01 DOI:10.1134/s1062739124020157
Du Tong, Li Yuwei
{"title":"In-Situ Stress Prediction Model for Tight Sandstone Based on XGBoost Algorithm","authors":"Du Tong, Li Yuwei","doi":"10.1134/s1062739124020157","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This article uses XGBoost algorithm to calculate rock in-situ stress. By using Pearson correlation coefficient method, it is determined that the logging parameters with the best correlation with minimum horizontal principal stress are Depth, GR, LLD, ILD, AC, VCA, with maximum horizontal principal stress are: Depth, GR, SP, CAL, DEN. In order to verify the performance of the model, linear regression, support vector machine, and random forest models are used for comparison. In order to improve the generalization performance, the <span>\\(k\\)</span>-fold cross-validation method is used. The results show that using XGBoost algorithm to predict rock in-situ stress with a small amount of data has a high average accuracy of 94% and good generalization performance. The linear regression model has a faster fitting speed, but the fitting accuracy is the lowest. The random forest and support vector machine models are in-between. The result confirms that the research method in this article has certain universality and can be extended to solve other rock in-situ stress prediction problems.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739124020157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

This article uses XGBoost algorithm to calculate rock in-situ stress. By using Pearson correlation coefficient method, it is determined that the logging parameters with the best correlation with minimum horizontal principal stress are Depth, GR, LLD, ILD, AC, VCA, with maximum horizontal principal stress are: Depth, GR, SP, CAL, DEN. In order to verify the performance of the model, linear regression, support vector machine, and random forest models are used for comparison. In order to improve the generalization performance, the \(k\)-fold cross-validation method is used. The results show that using XGBoost algorithm to predict rock in-situ stress with a small amount of data has a high average accuracy of 94% and good generalization performance. The linear regression model has a faster fitting speed, but the fitting accuracy is the lowest. The random forest and support vector machine models are in-between. The result confirms that the research method in this article has certain universality and can be extended to solve other rock in-situ stress prediction problems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 XGBoost 算法的致密砂岩原位应力预测模型
摘要 本文采用 XGBoost 算法计算岩石原位应力。通过使用皮尔逊相关系数法,确定与最小水平主应力相关性最好的测井参数为深度、GR、LLD、ILD、AC、VCA,与最大水平主应力相关性最好的测井参数为深度、GR、SP、CAL、DEN:深度、GR、SP、CAL、DEN。为了验证模型的性能,使用了线性回归、支持向量机和随机森林模型进行比较。为了提高泛化性能,使用了(k\)-倍交叉验证法。结果表明,使用 XGBoost 算法预测少量数据的岩石原位应力,平均准确率高达 94%,泛化性能良好。线性回归模型的拟合速度较快,但拟合精度最低。随机森林模型和支持向量机模型介于两者之间。结果证明本文的研究方法具有一定的普适性,可以推广用于解决其他岩石原位应力预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining Science
Journal of Mining Science 工程技术-矿业与矿物加工
CiteScore
1.70
自引率
25.00%
发文量
19
审稿时长
24 months
期刊介绍: The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.
期刊最新文献
Topicality of the Framework and General Theory for Safe Deep-Level Mining of Hydrocarbon-Bearing Formations Study on Loading Rate and Rock–Coal Strength Ratio Effect on Mechanical Properties of Coal–Rock Combination Interrelation of Mechanical Properties and Root Damage of Salix with Ground Surface Subsidence Experimental Investigation of Block Fracture Influence on P-Wave Propagation in Block Rock Mass Evolution Mechanism and Monitoring Technology of Overburden Deformation in Underground Mining with Grout Injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1