{"title":"Expression Characteristics of CsPAE55 in Citrus and Analysis of Its Interacting Protein","authors":"Qing He, Zihao Liu, Xiao He","doi":"10.1007/s11105-024-01493-y","DOIUrl":null,"url":null,"abstract":"<p>Exploring the resistance genes of citrus to Huanglongbing (HLB) is the foundation and key to disease resistance breeding. Based on comparative genomic transcriptome data, four pectin acetylesterase (PAE) genes responsive to <i>Candidatus</i> liberibacter asiaticus (<i>Ca</i>Las) infection induction were screened, and a gene cloned with higher differential expression levels was identified, named <i>CsPAE55</i>. Bioinformatics analyses showed that <i>CsPAE55</i> was conserved but had sequence differences compared with homologs. The subcellular localization results of tobacco indicated that CsPAE55 protein was mainly localized in the nucleus and cytoplasm. RT-qPCR analysis showed that the expression of <i>CsPAE55</i> was related to variety tolerance, tissue site, and symptom development. In addition, we established virus vector-mediated infection systems in citrus, namely gene silencing systems mediated by virus-induced gene silencing (VIGS) and gene overexpression systems mediated by citrus leaf blotch virus (CLBV), and obtained <i>CsPAE55</i> silencing and overexpression plants. And we established a stable transformation system mediated by <i>Agrobacterium rhizogenes</i> in citrus and obtained <i>CsPAE55</i> silencing and overexpression citrus hairy roots. The analysis of hormone content and gene expression in <i>CsPAE55</i> plants also indicated that overexpression of <i>CsPAE55</i> regulated the transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. Using Protein–Protein Interaction (PPI) to predict and screen for a citrus protein CsARF1 that may interact with CsPAE55, and preliminarily verifying its interaction with CsPAE55 protein through Yeast Two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BIFC). In summary, our data provided theoretical basis and genetic resources for subsequent molecular breeding of citrus resistance to HLB disease.</p>","PeriodicalId":20215,"journal":{"name":"Plant Molecular Biology Reporter","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology Reporter","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01493-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the resistance genes of citrus to Huanglongbing (HLB) is the foundation and key to disease resistance breeding. Based on comparative genomic transcriptome data, four pectin acetylesterase (PAE) genes responsive to Candidatus liberibacter asiaticus (CaLas) infection induction were screened, and a gene cloned with higher differential expression levels was identified, named CsPAE55. Bioinformatics analyses showed that CsPAE55 was conserved but had sequence differences compared with homologs. The subcellular localization results of tobacco indicated that CsPAE55 protein was mainly localized in the nucleus and cytoplasm. RT-qPCR analysis showed that the expression of CsPAE55 was related to variety tolerance, tissue site, and symptom development. In addition, we established virus vector-mediated infection systems in citrus, namely gene silencing systems mediated by virus-induced gene silencing (VIGS) and gene overexpression systems mediated by citrus leaf blotch virus (CLBV), and obtained CsPAE55 silencing and overexpression plants. And we established a stable transformation system mediated by Agrobacterium rhizogenes in citrus and obtained CsPAE55 silencing and overexpression citrus hairy roots. The analysis of hormone content and gene expression in CsPAE55 plants also indicated that overexpression of CsPAE55 regulated the transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. Using Protein–Protein Interaction (PPI) to predict and screen for a citrus protein CsARF1 that may interact with CsPAE55, and preliminarily verifying its interaction with CsPAE55 protein through Yeast Two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BIFC). In summary, our data provided theoretical basis and genetic resources for subsequent molecular breeding of citrus resistance to HLB disease.
期刊介绍:
The scope of the journal of Plant Molecular Biology Reporter has expanded to keep pace with new developments in molecular biology and the broad area of genomics. The journal now solicits papers covering myriad breakthrough technologies and discoveries in molecular biology, genomics, proteomics, metabolomics, and other ‘omics’, as well as bioinformatics.