Enhanced Hyperpolarizabilities Through p-Phenylene Bridges: Computational Studies on Metamerism and Functional Molecular Properties of Pyridinium–Dicyanomethanide-Based Zwitterions
{"title":"Enhanced Hyperpolarizabilities Through p-Phenylene Bridges: Computational Studies on Metamerism and Functional Molecular Properties of Pyridinium–Dicyanomethanide-Based Zwitterions","authors":"Sanyasi Sitha","doi":"10.1002/poc.4657","DOIUrl":null,"url":null,"abstract":"<p>Para-phenylene-bridged pyridinium (acceptor)–dicyanomethanide (donor)-based zwitterions were computationally investigated and are reported here. Reichardt's metamer was found to be twisted and Brooker's metamer in near-planar conformation. Natural bond orbital (NBO) analysis showed that mesomeric resonance is helping Brooker's metamer but found to be not helpful for Reichardt's metamer. To assess the impacts of metamerism and aromatic bridges, fundamental molecular properties like dipole moments (μ), polarizabilities (<i>α</i>), hyperpolarizabilities (<i>β</i>), and adiabatic absorptions of these two molecules were analyzed and then directly compared with their counterpart zwitterions without any bridges (<i>previously reported</i>). Results of impact of metamerism: Reichardt's metamer showed around <i>three times enhanced</i> hyperpolarizabilities (ωB97xD: <i>β</i> = 1577.1 × 10<sup>−30</sup> esu) than the Brooker's metamer (ωB97xD: <i>β</i> = 532.5 × 10<sup>−30</sup> esu). Impacts of <i>p</i>-phenylene bridges: Compared to their respective D–A directly connected zwitterions reported previously (in ωB97xD methodology, Reichardt's: <i>β</i> = 257.2 × 10<sup>−30</sup> esu and Brooker's: <i>β</i> = 67.2 × 10<sup>−30</sup> esu), respective <i>p</i>-phenylene-bridged zwitterions showed <i>five to eight times enhanced</i> hyperpolarizabilities. This report highlights the better efficiencies of Reichardt's metamer over Brooker's metamer and aromatically bridged over the directly connected zwitterions. Current findings may be helpful in the designing of efficient functional molecular chromophores, and aromatic bridge combined with zwitterions can be solutions to nonlinear transparency trade-off problem.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4657","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4657","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Para-phenylene-bridged pyridinium (acceptor)–dicyanomethanide (donor)-based zwitterions were computationally investigated and are reported here. Reichardt's metamer was found to be twisted and Brooker's metamer in near-planar conformation. Natural bond orbital (NBO) analysis showed that mesomeric resonance is helping Brooker's metamer but found to be not helpful for Reichardt's metamer. To assess the impacts of metamerism and aromatic bridges, fundamental molecular properties like dipole moments (μ), polarizabilities (α), hyperpolarizabilities (β), and adiabatic absorptions of these two molecules were analyzed and then directly compared with their counterpart zwitterions without any bridges (previously reported). Results of impact of metamerism: Reichardt's metamer showed around three times enhanced hyperpolarizabilities (ωB97xD: β = 1577.1 × 10−30 esu) than the Brooker's metamer (ωB97xD: β = 532.5 × 10−30 esu). Impacts of p-phenylene bridges: Compared to their respective D–A directly connected zwitterions reported previously (in ωB97xD methodology, Reichardt's: β = 257.2 × 10−30 esu and Brooker's: β = 67.2 × 10−30 esu), respective p-phenylene-bridged zwitterions showed five to eight times enhanced hyperpolarizabilities. This report highlights the better efficiencies of Reichardt's metamer over Brooker's metamer and aromatically bridged over the directly connected zwitterions. Current findings may be helpful in the designing of efficient functional molecular chromophores, and aromatic bridge combined with zwitterions can be solutions to nonlinear transparency trade-off problem.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.