{"title":"MULTIPLICATIVE FUNCTIONS k-ADDITIVE ON GENERALISED OCTAGONAL NUMBERS","authors":"ELCHIN HASANALIZADE, POO-SUNG PARK","doi":"10.1017/s0004972724000479","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline1.png\"/> <jats:tex-math> $k\\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. We prove that the set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline2.png\"/> <jats:tex-math> $\\mathcal {O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of all nonzero generalised octagonal numbers is a <jats:italic>k</jats:italic>-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline3.png\"/> <jats:tex-math> $f_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the condition <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_eqnu1.png\"/> <jats:tex-math> $$ \\begin{align*} f_k(x_1+x_2+\\cdots+x_k)=f_k(x_1)+f_k(x_2)+\\cdots+f_k(x_k) \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> for arbitrary <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline4.png\"/> <jats:tex-math> $x_1,\\ldots ,x_k\\in \\mathcal {O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline5.png\"/> <jats:tex-math> $f_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the identity function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline6.png\"/> <jats:tex-math> $f_k(n)=n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline7.png\"/> <jats:tex-math> $n\\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline8.png\"/> <jats:tex-math> $f_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline9.png\"/> <jats:tex-math> $f_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are not determined uniquely.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000479","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $k\geq 4$ be an integer. We prove that the set $\mathcal {O}$ of all nonzero generalised octagonal numbers is a k-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function $f_k$ satisfies the condition $$ \begin{align*} f_k(x_1+x_2+\cdots+x_k)=f_k(x_1)+f_k(x_2)+\cdots+f_k(x_k) \end{align*} $$ for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$ , then $f_k$ is the identity function $f_k(n)=n$ for all $n\in \mathbb {N}$ . We also show that $f_2$ and $f_3$ are not determined uniquely.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society