首页 > 最新文献

Bulletin of the Australian Mathematical Society最新文献

英文 中文
ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II 关于大质因数移位素数的猜想,ii
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000534
YUCHEN DING

Let $mathcal {P}$ be the set of primes and $pi (x)$ the number of primes not exceeding x. Let $P^+(n)$ be the largest prime factor of n, with the convention $P^+(1)=1$, and $ T_c(x)=#{ple x:pin mathcal {P},P^+(p-1)ge p^c}. $ Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.) 33 (2017), 377–382], we show that for any c with $8/9le c<1$, $$ begin{align*} limsup_{xrightarrowinfty}T_c(x)/pi(x)le 8(1/c-1), end{align*} $$

which clearly means that $$ begin{align*} limsup_{xrightarrowinfty}T_c(x)/pi(x)rightarrow 0 quad text{as } crightarrow 1. end{align*} $$

让 $P^+(n)$ 是 n 的最大素因子,约定为 $P^+(1)=1$,并且 $ T_c(x)=#{ple x:pin mathcal {P},P^+(p-1)ge p^c}.$ 由陈和陈的一个猜想激发['论移位素数的最大素因子', Acta Math.Sin.(Engl. Ser.) 33 (2017), 377-382], 我们证明,对于任意具有 $8/9le c<1$ 的 c,$$ begin{align*}limsup_{xrightarrowinfty}T_c(x)/pi(x)le 8(1/c-1), end{align*}这显然意味着 $$ (开始{align*}T_c(x)/pi(x)rightarrow 0 quad text{as } crightarrow 1.end{align*}$$
{"title":"ON A CONJECTURE ON SHIFTED PRIMES WITH LARGE PRIME FACTORS, II","authors":"YUCHEN DING","doi":"10.1017/s0004972724000534","DOIUrl":"https://doi.org/10.1017/s0004972724000534","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {P}$</span></span></img></span></span> be the set of primes and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$pi (x)$</span></span></img></span></span> the number of primes not exceeding <span>x</span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(n)$</span></span></img></span></span> be the largest prime factor of <span>n</span>, with the convention <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P^+(1)=1$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$ T_c(x)=#{ple x:pin mathcal {P},P^+(p-1)ge p^c}. $</span></span></img></span></span> Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, <span>Acta Math. Sin. (Engl. Ser.)</span> <span>33</span> (2017), 377–382], we show that for any <span>c</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$8/9le c&lt;1$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} limsup_{xrightarrowinfty}T_c(x)/pi(x)le 8(1/c-1), end{align*} $$</span></span></img></span></p><p>which clearly means that <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912124419965-0789:S0004972724000534:S0004972724000534_eqnu2.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} limsup_{xrightarrowinfty}T_c(x)/pi(x)rightarrow 0 quad text{as } crightarrow 1. end{align*} $$</span></span></img></span></p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MONOGENIC EVEN QUARTIC TRINOMIALS 单向偶四次方三项式
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000510
LENNY JONES

A monic polynomial $f(x)in {mathbb Z}[x]$ of degree N is called monogenic if $f(x)$ is irreducible over ${mathbb Q}$ and ${1,theta ,theta ^2,ldots ,theta ^{N-1}}$ is a basis for the ring of integers of ${mathbb Q}(theta )$, where $f(theta )=0$. We prove that there exist exactly three distinct monogenic trinomials of the form $x^4+bx^2+d$ whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.

如果 $f(x)$ 在 ${mathbb Q}$ 上是不可约的,并且 ${1、theta ,theta ^2,ldots ,theta ^{N-1}}$ 是 ${mathbb Q}(theta )$ 的整数环的基,其中 $f(theta )=0$.我们证明恰好存在三个不同的形式为 $x^4+bx^2+d$ 的单元三项式,它们的伽罗瓦群是阶数为 4 的循环群。我们还证明了当伽罗瓦群不是循环群时,情况会截然不同。
{"title":"MONOGENIC EVEN QUARTIC TRINOMIALS","authors":"LENNY JONES","doi":"10.1017/s0004972724000510","DOIUrl":"https://doi.org/10.1017/s0004972724000510","url":null,"abstract":"<p>A monic polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)in {mathbb Z}[x]$</span></span></img></span></span> of degree <span>N</span> is called <span>monogenic</span> if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is irreducible over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${mathbb Q}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${1,theta ,theta ^2,ldots ,theta ^{N-1}}$</span></span></img></span></span> is a basis for the ring of integers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${mathbb Q}(theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(theta )=0$</span></span></img></span></span>. We prove that there exist exactly three distinct monogenic trinomials of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$x^4+bx^2+d$</span></span></img></span></span> whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON A PROBLEM OF PONGSRIIAM ON THE SUM OF DIVISORS 关于除数之和的庞氏难题
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000492
RUI-JING WANG

For any positive integer n, let $sigma (n)$ be the sum of all positive divisors of n. We prove that for every integer k with $1leq kleq 29$ and $(k,30)=1,$ $$ begin{align*} sum_{nleq K}sigma(30n)>sum_{nleq K}sigma(30n+k) end{align*} $$

for all $Kin mathbb {N},$ which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].

对于任意正整数 n,让 $sigma (n)$ 是 n 的所有正除数之和。我们证明,对于每一个整数k,只要有$1leq kleq 29$和$(k,30)=1,$$ begin{align*}。sum_{nleq K}sigma(30n)>sum_{nleq K}sigma(30n+k) end{align*}$$for all $Kin mathbb {N}, $ 这给了 Pongsriiam 提出的问题一个肯定的答案['Sums of divisors on arithmetic progressions', Period.Math.匈牙利。88 (2024), 443-460].
{"title":"ON A PROBLEM OF PONGSRIIAM ON THE SUM OF DIVISORS","authors":"RUI-JING WANG","doi":"10.1017/s0004972724000492","DOIUrl":"https://doi.org/10.1017/s0004972724000492","url":null,"abstract":"<p>For any positive integer <span>n</span>, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$sigma (n)$</span></span></img></span></span> be the sum of all positive divisors of <span>n</span>. We prove that for every integer <span>k</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$1leq kleq 29$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(k,30)=1,$</span></span></img></span></span> <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} sum_{nleq K}sigma(30n)&gt;sum_{nleq K}sigma(30n+k) end{align*} $$</span></span></img></span></p><p>for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913031000660-0696:S0004972724000492:S0004972724000492_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Kin mathbb {N},$</span></span></img></span></span> which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, <span>Period. Math. Hungar</span>. <span>88</span> (2024), 443–460].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RADIAL ASYMPTOTICS OF GENERATING FUNCTIONS OF k-REGULAR SEQUENCES k 规则序列生成函数的径向拟数
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000480
MICHAEL COONS, JOHN LIND

We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, Proc. Amer. Math. Soc. 145(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, Int. J. Number Theory, to appear].

我们给出了贝尔和库恩斯定理的新证明['马勒函数的超越性检验',Proc.Amer.Math.145(3)(2017),1061-1070]关于作为正则序列生成函数的马勒函数的前阶径向渐近性的新证明。我们的方法允许我们对贝尔和库恩斯证明存在的振荡进行描述。这扩展了 Poulet 和 Rivoal 的最新成果['马勒函数的径向行为',《国际数论杂志》,待出版]。
{"title":"RADIAL ASYMPTOTICS OF GENERATING FUNCTIONS OF k-REGULAR SEQUENCES","authors":"MICHAEL COONS, JOHN LIND","doi":"10.1017/s0004972724000480","DOIUrl":"https://doi.org/10.1017/s0004972724000480","url":null,"abstract":"<p>We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, <span>Proc. Amer. Math. Soc.</span> <span>145</span>(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, <span>Int. J. Number Theory</span>, to appear].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXTREMAL GRAPHS FOR DEGREE SUMS AND DOMINATING CYCLES 度数和主循环的极值图
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000522
LU CHEN, YUEYU WU
<p>A cycle <span>C</span> of a graph <span>G</span> is <span>dominating</span> if <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline1.png"><span data-mathjax-type="texmath"><span>$V(C)$</span></span></img></span></span> is a dominating set and <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline2.png"><span data-mathjax-type="texmath"><span>$V(G)backslash V(C)$</span></span></img></span></span> is an independent set. Wu <span>et al.</span> [‘Degree sums and dominating cycles’, <span>Discrete Mathematics</span> <span>344</span> (2021), Article no. 112224] proved that every longest cycle of a <span>k</span>-connected graph <span>G</span> on <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline3.png"><span data-mathjax-type="texmath"><span>$ngeq 3$</span></span></img></span></span> vertices with <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline4.png"><span data-mathjax-type="texmath"><span>$kgeq 2$</span></span></img></span></span> is dominating if the degree sum is more than <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline5.png"><span data-mathjax-type="texmath"><span>$(k+1)(n+1)/3$</span></span></img></span></span> for any <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline6.png"><span data-mathjax-type="texmath"><span>$k+1$</span></span></img></span></span> pairwise nonadjacent vertices. They also showed that this bound is sharp. In this paper, we show that the extremal graphs <span>G</span> for this condition satisfy <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline7.png"><span data-mathjax-type="texmath"><span>$(n-2)/3K_1vee (n+1)/3K_2 subseteq G subseteq K_{(n-2)/3}vee (n+1)/3K_2$</span></span></img></span></span> or <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline8.png"><span data-mathjax-type="texmath"><span>$2K_1vee 3K_{(n-2)/3}subseteq G subseteq K_2vee 3K_{(n-2)/3}.$</span></sp
如果 $V(C)$ 是支配集且 $V(G)backslash V(C)$ 是独立集,那么图 G 的循环 C 就是支配集。Wu 等人['度和与支配循环',《离散数学》344 (2021),文章编号:112224]证明了每一个最长的循环都是支配循环。112224]证明了如果对于任意 $k+1$ 成对非相邻顶点的度数总和大于 $(k+1)(n+1)/3$,则在 $ngeq 3$ 顶点上具有 $kgeq 2$ 的 k 连接图 G 的每个最长循环都是支配循环。他们还证明了这一界限是尖锐的。在本文中,我们证明了这个条件下的极值图 G 满足 $(n-2)/3K_1vee (n+1)/3K_2 subseteq G subseteq K_{(n-2)/3}vee (n+1)/3K_2$ 或 $2K_1vee 3K_{(n-2)/3}subseteq G subseteq K_2vee 3K_{(n-2)/3}.$ 。
{"title":"EXTREMAL GRAPHS FOR DEGREE SUMS AND DOMINATING CYCLES","authors":"LU CHEN, YUEYU WU","doi":"10.1017/s0004972724000522","DOIUrl":"https://doi.org/10.1017/s0004972724000522","url":null,"abstract":"&lt;p&gt;A cycle &lt;span&gt;C&lt;/span&gt; of a graph &lt;span&gt;G&lt;/span&gt; is &lt;span&gt;dominating&lt;/span&gt; if &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$V(C)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is a dominating set and &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$V(G)backslash V(C)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is an independent set. Wu &lt;span&gt;et al.&lt;/span&gt; [‘Degree sums and dominating cycles’, &lt;span&gt;Discrete Mathematics&lt;/span&gt; &lt;span&gt;344&lt;/span&gt; (2021), Article no. 112224] proved that every longest cycle of a &lt;span&gt;k&lt;/span&gt;-connected graph &lt;span&gt;G&lt;/span&gt; on &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ngeq 3$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; vertices with &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$kgeq 2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is dominating if the degree sum is more than &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$(k+1)(n+1)/3$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; for any &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$k+1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; pairwise nonadjacent vertices. They also showed that this bound is sharp. In this paper, we show that the extremal graphs &lt;span&gt;G&lt;/span&gt; for this condition satisfy &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$(n-2)/3K_1vee (n+1)/3K_2 subseteq G subseteq K_{(n-2)/3}vee (n+1)/3K_2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; or &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125250921-0666:S0004972724000522:S0004972724000522_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$2K_1vee 3K_{(n-2)/3}subseteq G subseteq K_2vee 3K_{(n-2)/3}.$&lt;/span&gt;&lt;/sp","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GRAPHS WITH SEMITOTAL DOMINATION NUMBER HALF THEIR ORDER 半总支配数为其阶数一半的图
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000509
JIE CHEN, SHOU-JUN XU

In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of G, denoted by $gamma _{t2}(G)$, is the minimum cardinality of a semitotal dominating set in G. Goddard, Henning and McPillan [‘Semitotal domination in graphs’, Utilitas Math. 94 (2014), 67–81] characterised the trees and graphs of minimum degree 2 with semitotal domination number half their order. In this paper, we characterise all graphs whose semitotal domination number is half their order.

在无孤立图 G 中,如果顶点子集 S 是 G 的支配集,且 S 中的每个顶点与 S 中另一个顶点的距离都在 2 以内,则该顶点子集 S 是 G 的半总支配集。G 的半总支配数用 $gamma _{t2}(G)$ 表示,是 G 中半总支配集的最小心性。Goddard、Henning 和 McPillan ['图中的半总支配数',Utilitas Math.在本文中,我们将描述所有半总支配数为其阶数一半的图的特征。
{"title":"GRAPHS WITH SEMITOTAL DOMINATION NUMBER HALF THEIR ORDER","authors":"JIE CHEN, SHOU-JUN XU","doi":"10.1017/s0004972724000509","DOIUrl":"https://doi.org/10.1017/s0004972724000509","url":null,"abstract":"<p>In an isolate-free graph <span>G</span>, a subset <span>S</span> of vertices is a <span>semitotal dominating set</span> of <span>G</span> if it is a dominating set of <span>G</span> and every vertex in <span>S</span> is within distance 2 of another vertex of <span>S</span>. The <span>semitotal domination number</span> of <span>G</span>, denoted by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125800045-0875:S0004972724000509:S0004972724000509_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$gamma _{t2}(G)$</span></span></img></span></span>, is the minimum cardinality of a semitotal dominating set in <span>G</span>. Goddard, Henning and McPillan [‘Semitotal domination in graphs’, <span>Utilitas Math.</span> <span>94</span> (2014), 67–81] characterised the trees and graphs of minimum degree 2 with semitotal domination number half their order. In this paper, we characterise all graphs whose semitotal domination number is half their order.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INEQUALITIES AND UNIFORM ASYMPTOTIC FORMULAE FOR SPT-CRANK OF PARTITIONS 分区的不等式和均匀渐近公式
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1017/s0004972724000455
YUAN CHEN, NIAN HONG ZHOU

We establish some inequalities that arise from truncating Lerch sums and derive uniform asymptotic formulae for the spt-crank of ordinary partitions. The uniform asymptotic formulae improve upon a result of Mao [‘Asymptotic formulas for spt-crank of partitions’, J. Math. Anal. Appl. 460(1) (2018), 121–139].

我们建立了截断勒奇和所产生的一些不等式,并推导出了普通分区 spt-rank的统一渐近公式。统一渐近公式改进了毛泽东的一个结果['Asymptotic formulas for spt-crank of partitions', J. Math.Anal.460(1) (2018),121-139]。
{"title":"INEQUALITIES AND UNIFORM ASYMPTOTIC FORMULAE FOR SPT-CRANK OF PARTITIONS","authors":"YUAN CHEN, NIAN HONG ZHOU","doi":"10.1017/s0004972724000455","DOIUrl":"https://doi.org/10.1017/s0004972724000455","url":null,"abstract":"<p>We establish some inequalities that arise from truncating Lerch sums and derive uniform asymptotic formulae for the spt-crank of ordinary partitions. The uniform asymptotic formulae improve upon a result of Mao [‘Asymptotic formulas for spt-crank of partitions’, <span>J. Math. Anal. Appl.</span> <span>460</span>(1) (2018), 121–139].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A q-SUPERCONGRUENCE ARISING FROM ANDREWS’ IDENTITY 由安德鲁斯的身份产生的 q 级超不确定性
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-08-29 DOI: 10.1017/s0004972724000467
JI-CAI LIU, JING LIU
We establish a q-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas, which extends a q-congruence of Guo and Zeng [‘Some q-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory145 (2014), 301–316]. The important ingredients in the proof include Andrews’ $_4phi _3$ terminating identity.
我们建立了一个与罗德里格斯-维耶加斯的超等公差相关的 q-analogue ,它扩展了郭和曾的 q-ongruence ['罗德里格斯-维耶加斯的超等公差的一些 q-analogue', J. Number Theory145 (2014), 301-316] 。证明中的重要成分包括安德鲁斯的$_4phi _3$终止身份。
{"title":"A q-SUPERCONGRUENCE ARISING FROM ANDREWS’ IDENTITY","authors":"JI-CAI LIU, JING LIU","doi":"10.1017/s0004972724000467","DOIUrl":"https://doi.org/10.1017/s0004972724000467","url":null,"abstract":"We establish a <jats:italic>q</jats:italic>-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas, which extends a <jats:italic>q</jats:italic>-congruence of Guo and Zeng [‘Some <jats:italic>q</jats:italic>-analogues of supercongruences of Rodriguez-Villegas’, <jats:italic>J. Number Theory</jats:italic>145 (2014), 301–316]. The important ingredients in the proof include Andrews’ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000467_inline2.png\"/> <jats:tex-math> $_4phi _3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> terminating identity.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MULTIPLICATIVE FUNCTIONS k-ADDITIVE ON GENERALISED OCTAGONAL NUMBERS 公有四舍五入数的多元函数 k- ADDITIVE
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-08-27 DOI: 10.1017/s0004972724000479
ELCHIN HASANALIZADE, POO-SUNG PARK
Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline1.png"/> <jats:tex-math> $kgeq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. We prove that the set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline2.png"/> <jats:tex-math> $mathcal {O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of all nonzero generalised octagonal numbers is a <jats:italic>k</jats:italic>-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline3.png"/> <jats:tex-math> $f_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the condition <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_eqnu1.png"/> <jats:tex-math> $$ begin{align*} f_k(x_1+x_2+cdots+x_k)=f_k(x_1)+f_k(x_2)+cdots+f_k(x_k) end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> for arbitrary <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline4.png"/> <jats:tex-math> $x_1,ldots ,x_kin mathcal {O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline5.png"/> <jats:tex-math> $f_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the identity function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline6.png"/> <jats:tex-math> $f_k(n)=n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline7.png"/> <jats:tex-math> $nin mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline8.png"/> <jats:tex-math> $f_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000479_inline9.png"/> <jats:tex-math> $f_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are not determined uniquel
让 $kgeq 4$ 是一个整数。我们证明所有非零广义八角数的集合 $mathcal {O}$ 是乘法函数集合的 k-additive uniqueness 集合。也就是说,如果一个乘法函数 $f_k$ 满足条件 $$ begin{align*} f_k(x_1+x_2+cdots+x_k)=f_k(x_1)+f_k(x_2)+cdots+f_k(x_k) end{align*}$$ for arbitrary $x_1,ldots ,x_kin mathcal {O}$ , then $f_k$ is the identity function $f_k(n)=n$ for all $nin mathbb {N}$.我们还证明 $f_2$ 和 $f_3$ 并不是唯一确定的。
{"title":"MULTIPLICATIVE FUNCTIONS k-ADDITIVE ON GENERALISED OCTAGONAL NUMBERS","authors":"ELCHIN HASANALIZADE, POO-SUNG PARK","doi":"10.1017/s0004972724000479","DOIUrl":"https://doi.org/10.1017/s0004972724000479","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline1.png\"/&gt; &lt;jats:tex-math&gt; $kgeq 4$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be an integer. We prove that the set &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline2.png\"/&gt; &lt;jats:tex-math&gt; $mathcal {O}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of all nonzero generalised octagonal numbers is a &lt;jats:italic&gt;k&lt;/jats:italic&gt;-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline3.png\"/&gt; &lt;jats:tex-math&gt; $f_k$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; satisfies the condition &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_eqnu1.png\"/&gt; &lt;jats:tex-math&gt; $$ begin{align*} f_k(x_1+x_2+cdots+x_k)=f_k(x_1)+f_k(x_2)+cdots+f_k(x_k) end{align*} $$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt; for arbitrary &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline4.png\"/&gt; &lt;jats:tex-math&gt; $x_1,ldots ,x_kin mathcal {O}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, then &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline5.png\"/&gt; &lt;jats:tex-math&gt; $f_k$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the identity function &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline6.png\"/&gt; &lt;jats:tex-math&gt; $f_k(n)=n$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for all &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline7.png\"/&gt; &lt;jats:tex-math&gt; $nin mathbb {N}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. We also show that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline8.png\"/&gt; &lt;jats:tex-math&gt; $f_2$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000479_inline9.png\"/&gt; &lt;jats:tex-math&gt; $f_3$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; are not determined uniquel","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENUMERATION OF GROUPS IN SOME SPECIAL VARIETIES OF A-GROUPS A 群的一些特殊品种中的群的枚举
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-08-27 DOI: 10.1017/s0004972724000431
ARUSHI, GEETHA VENKATARAMAN

We find an upper bound for the number of groups of order n up to isomorphism in the variety ${mathfrak {S}}={mathfrak {A}_p}{mathfrak {A}_q}{mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $mathfrak {A}_qmathfrak {A}_r$.

我们发现了在 ${mathfrak {S}}={mathfrak {A}_p}{mathfrak {A}_q}{mathfrak {A}_r}$ 变项(其中 p、q 和 r 是不同的素数)中阶数为 n 的同构群的数量上限。我们还找到了在一般线性群的子群中也在 $mathfrak {A}_qmathfrak {A}_r}$ 中的最大子群的阶数和共轭类数的约束。
{"title":"ENUMERATION OF GROUPS IN SOME SPECIAL VARIETIES OF A-GROUPS","authors":"ARUSHI, GEETHA VENKATARAMAN","doi":"10.1017/s0004972724000431","DOIUrl":"https://doi.org/10.1017/s0004972724000431","url":null,"abstract":"<p>We find an upper bound for the number of groups of order <span>n</span> up to isomorphism in the variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240824023521338-0591:S0004972724000431:S0004972724000431_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathfrak {S}}={mathfrak {A}_p}{mathfrak {A}_q}{mathfrak {A}_r}$</span></span></img></span></span>, where <span>p</span>, <span>q</span> and <span>r</span> are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240824023521338-0591:S0004972724000431:S0004972724000431_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathfrak {A}_qmathfrak {A}_r$</span></span></img></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bulletin of the Australian Mathematical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1