Sijia Nie, Zhibin Zheng, Yanxin Qiao, Yurong Duan, Jie Cui, Saleh D. Mekkey, Mohammed A. Amin, Saad Melhi, Haokun Yang, Huiling Zhou, Shunli Zheng
{"title":"Corrosion behavior of as-cast Al0.75CoCr1.25FeNi high entropy alloy in 0.5 mol/L sulfuric acid","authors":"Sijia Nie, Zhibin Zheng, Yanxin Qiao, Yurong Duan, Jie Cui, Saleh D. Mekkey, Mohammed A. Amin, Saad Melhi, Haokun Yang, Huiling Zhou, Shunli Zheng","doi":"10.1007/s42114-024-00951-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the corrosion behaviors of an as-cast Al<sub>0.75</sub>CoCr<sub>1.25</sub>FeNi high entropy alloy (HEA) in 0.5 mol/L H<sub>2</sub>SO<sub>4</sub> solution. The results showed that the HEA exhibited mixed column dendrite and inter-dendrite structures composed of face-centered cubic (FCC) phase, body-centered cubic (BCC) phase, and ordered BCC phase (B2). The corrosion resistance of the HEA in 0.5 mol/L H<sub>2</sub>SO<sub>4</sub> solution was inferior to that of 316L stainless steel (SS); the HEA displayed an incomplete capacitive reactance arc at higher frequencies and an inductive reactance arc at lower frequencies during the electrochemical impedance spectroscopy test. The immersion experiments demonstrated an electrical potential difference between the Ni–Al-rich phase and the Fe-Co-Cr-rich phase of the HEA, resulting in micro-galvanic corrosion. This micro-galvanic corrosion prefers on the B2 (Ni–Al-rich) phase of the HEA. Moreover, the FCC phase and BCC1 phase of HEA corroded with the prolongation of immersion time. The surface of HEA has a loose and porous corrosion product film due to its relatively high percentage of Al<sub>2</sub>O<sub>3</sub>. Additionally, the ratio of Cr<sub>2</sub>O<sub>3</sub>/(Cr + Cr(OH)<sub>3</sub>) in the corrosion product film decreased with the increase of immersion time.</p><h3>Graphical Abstract</h3><p>Al<sub>0.75</sub>CoCr<sub>1.25</sub>FeNi high entropy alloy exhibited mixed column dendrite and inter-dendrite structures composed of face-centered cubic (FCC) phase, body-centered cubic (BCC) phase, and ordered BCC phase (B2). The corrosion resistance of the high entropy alloy in 0.5 mol/L H<sub>2</sub>SO<sub>4</sub> solution was inferior to that of 316L stainless steel.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00951-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the corrosion behaviors of an as-cast Al0.75CoCr1.25FeNi high entropy alloy (HEA) in 0.5 mol/L H2SO4 solution. The results showed that the HEA exhibited mixed column dendrite and inter-dendrite structures composed of face-centered cubic (FCC) phase, body-centered cubic (BCC) phase, and ordered BCC phase (B2). The corrosion resistance of the HEA in 0.5 mol/L H2SO4 solution was inferior to that of 316L stainless steel (SS); the HEA displayed an incomplete capacitive reactance arc at higher frequencies and an inductive reactance arc at lower frequencies during the electrochemical impedance spectroscopy test. The immersion experiments demonstrated an electrical potential difference between the Ni–Al-rich phase and the Fe-Co-Cr-rich phase of the HEA, resulting in micro-galvanic corrosion. This micro-galvanic corrosion prefers on the B2 (Ni–Al-rich) phase of the HEA. Moreover, the FCC phase and BCC1 phase of HEA corroded with the prolongation of immersion time. The surface of HEA has a loose and porous corrosion product film due to its relatively high percentage of Al2O3. Additionally, the ratio of Cr2O3/(Cr + Cr(OH)3) in the corrosion product film decreased with the increase of immersion time.
Graphical Abstract
Al0.75CoCr1.25FeNi high entropy alloy exhibited mixed column dendrite and inter-dendrite structures composed of face-centered cubic (FCC) phase, body-centered cubic (BCC) phase, and ordered BCC phase (B2). The corrosion resistance of the high entropy alloy in 0.5 mol/L H2SO4 solution was inferior to that of 316L stainless steel.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.