{"title":"Edge-Side Cellular Network Traffic Prediction Based on Trend Graph Characterization Network","authors":"Mingxiang Hao;Xiaochuan Sun;Yingqi Li;Haijun Zhang","doi":"10.1109/TNSE.2024.3455784","DOIUrl":null,"url":null,"abstract":"Predicting edge-side cellular network traffic stands as a pivotal facilitator for network automation in next-generation communication systems. However, the traffic data at the edge exhibits significant heterogeneity, inhomogeneity, and volatility due to geographic location, human activities, and demand diversification, thus making accurate network traffic prediction a rigorous challenge. To solve this problem, this paper proposes a novel cellular network traffic prediction model in the edge-managed multi-base station (BS) scenarios, named trend graph characterization network (TGCN). Structurally, TGCN has three key components of trend feature extractor, temporal feature extractor and predictor. Firstly, the high-dimensional trend feature of traffic can be captured by the combination of ordinal pattern transition network (OPTN) and graph attention network (GAT). Furthermore, in the temporal feature extractor neural circuit policy (NCP) is introduced for multi-scale time-varying dependent features. Finally, a fully-connected layer serves as the approximator of BS traffic. On real-world datasets, we verify the superiority of our proposal via statistical analysis, prediction accuracy and ablation experiments.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6118-6129"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10670094/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting edge-side cellular network traffic stands as a pivotal facilitator for network automation in next-generation communication systems. However, the traffic data at the edge exhibits significant heterogeneity, inhomogeneity, and volatility due to geographic location, human activities, and demand diversification, thus making accurate network traffic prediction a rigorous challenge. To solve this problem, this paper proposes a novel cellular network traffic prediction model in the edge-managed multi-base station (BS) scenarios, named trend graph characterization network (TGCN). Structurally, TGCN has three key components of trend feature extractor, temporal feature extractor and predictor. Firstly, the high-dimensional trend feature of traffic can be captured by the combination of ordinal pattern transition network (OPTN) and graph attention network (GAT). Furthermore, in the temporal feature extractor neural circuit policy (NCP) is introduced for multi-scale time-varying dependent features. Finally, a fully-connected layer serves as the approximator of BS traffic. On real-world datasets, we verify the superiority of our proposal via statistical analysis, prediction accuracy and ablation experiments.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.