Direct Reconstruction of the Band Diagram of Rhombohedral-Stacked Bilayer WSe2–Graphene Heterostructure via Photoemission Electron Microscopy

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-03 DOI:10.1021/acsaelm.4c00965
Mohamed Boutchich, Keiki Fukumoto, Aymen Mahmoudi, Alexandre Jaffré, José Alvarez, David Alamarguy, Chanan Euaruksakul, Fabrice Oehler, Abdelkarim Ouerghi
{"title":"Direct Reconstruction of the Band Diagram of Rhombohedral-Stacked Bilayer WSe2–Graphene Heterostructure via Photoemission Electron Microscopy","authors":"Mohamed Boutchich, Keiki Fukumoto, Aymen Mahmoudi, Alexandre Jaffré, José Alvarez, David Alamarguy, Chanan Euaruksakul, Fabrice Oehler, Abdelkarim Ouerghi","doi":"10.1021/acsaelm.4c00965","DOIUrl":null,"url":null,"abstract":"The determination of energy levels at heterointerfaces is important for understanding charge transport mechanisms, enabling judicious assembly of various electronic and optoelectronic devices. Herein, we investigated the interface properties of a heterostructure consisting of two-dimensional (2D) transition-metal dichalcogenides rhombohedral 3R (AB stacking) bilayer WSe<sub>2</sub> (3R-2 ML WSe<sub>2</sub>) and epitaxial graphene using photoemission electron microscopy (PEEM) with a femtosecond laser excitation source. The 2D energy band diagram was imaged in an energy-resolved mode (ER-PEEM). For the 3R-2 ML WSe<sub>2</sub>, the conduction band minimum and the exciton were located at 2.0 and 2.6 eV, respectively, while the valence band maximum was at 4.18 eV. The Fermi level of graphene was located at 4.08 eV. These observations were supported by photoluminescence and Kelvin probe atomic force microscopy results. Furthermore, we investigated carrier dynamics using the system in the time-resolved mode (TR-PEEM). We evidenced that irradiation with 2.4 eV pulses induced a surface photovoltage that relaxed within ∼25 ps. This methodology, coupling spectral and dynamic properties with space, time, and energy resolutions, allows the reconstruction of energy band diagrams and observation of the recombination mechanisms in nanoscale heterostructures. These parameters are instrumental for modeling and fabricating a wide range of heterojunction devices for photovoltaic and optoelectronic applications.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of energy levels at heterointerfaces is important for understanding charge transport mechanisms, enabling judicious assembly of various electronic and optoelectronic devices. Herein, we investigated the interface properties of a heterostructure consisting of two-dimensional (2D) transition-metal dichalcogenides rhombohedral 3R (AB stacking) bilayer WSe2 (3R-2 ML WSe2) and epitaxial graphene using photoemission electron microscopy (PEEM) with a femtosecond laser excitation source. The 2D energy band diagram was imaged in an energy-resolved mode (ER-PEEM). For the 3R-2 ML WSe2, the conduction band minimum and the exciton were located at 2.0 and 2.6 eV, respectively, while the valence band maximum was at 4.18 eV. The Fermi level of graphene was located at 4.08 eV. These observations were supported by photoluminescence and Kelvin probe atomic force microscopy results. Furthermore, we investigated carrier dynamics using the system in the time-resolved mode (TR-PEEM). We evidenced that irradiation with 2.4 eV pulses induced a surface photovoltage that relaxed within ∼25 ps. This methodology, coupling spectral and dynamic properties with space, time, and energy resolutions, allows the reconstruction of energy band diagrams and observation of the recombination mechanisms in nanoscale heterostructures. These parameters are instrumental for modeling and fabricating a wide range of heterojunction devices for photovoltaic and optoelectronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光发射电子显微镜直接重构斜方体叠层双层 WSe2-Graphene 异质结构的能带图
确定异质界面的能级对于了解电荷传输机制、合理组装各种电子和光电器件非常重要。在此,我们使用飞秒激光激发光源,利用光发射电子显微镜(PEEM)研究了由二维(2D)过渡金属二卤化物斜方体 3R(AB 堆积)双层 WSe2(3R-2 ML WSe2)和外延石墨烯组成的异质结构的界面特性。二维能带图以能量分辨模式(ER-PEEM)成像。对于 3R-2 ML WSe2,导带最小值和激子分别位于 2.0 和 2.6 eV,而价带最大值位于 4.18 eV。石墨烯的费米级位于 4.08 eV。这些观察结果得到了光致发光和开尔文探针原子力显微镜结果的支持。此外,我们还利用该系统的时间分辨模式(TR-PEEM)研究了载流子动力学。我们发现,用 2.4 eV 脉冲辐照会引起表面光电压在 25 ps 内松弛。这种方法将光谱和动态特性与空间、时间和能量分辨率结合起来,可以重建能带图并观察纳米级异质结构中的重组机制。这些参数有助于为光伏和光电应用中的各种异质结器件建模和制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1